enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Symbolic regression - Wikipedia

    en.wikipedia.org/wiki/Symbolic_regression

    The symbolic regression problem for mathematical functions has been tackled with a variety of methods, including recombining equations most commonly using genetic programming, [1] as well as more recent methods utilizing Bayesian methods [2] and neural networks. [3]

  3. Symbolic artificial intelligence - Wikipedia

    en.wikipedia.org/wiki/Symbolic_artificial...

    In artificial intelligence, symbolic artificial intelligence (also known as classical artificial intelligence or logic-based artificial intelligence) [1] [2] is the term for the collection of all methods in artificial intelligence research that are based on high-level symbolic (human-readable) representations of problems, logic and search. [3]

  4. Bayesian network - Wikipedia

    en.wikipedia.org/wiki/Bayesian_network

    Bayesian networks are ideal for taking an event that occurred and predicting the likelihood that any one of several possible known causes was the contributing factor. For example, a Bayesian network could represent the probabilistic relationships between diseases and symptoms.

  5. List of programming languages for artificial intelligence

    en.wikipedia.org/wiki/List_of_programming...

    C# can be used to develop high level machine learning models using Microsoft’s .NET suite. ML.NET was developed to aid integration with existing .NET projects, simplifying the process for existing software using the .NET platform. Smalltalk has been used extensively for simulations, neural networks, machine learning, and genetic algorithms.

  6. Bayesian learning mechanisms - Wikipedia

    en.wikipedia.org/wiki/Bayesian_learning_mechanisms

    Bayesian learning mechanisms are probabilistic causal models [1] used in computer science to research the fundamental underpinnings of machine learning, and in cognitive neuroscience, to model conceptual development. [2] [3]

  7. Markov blanket - Wikipedia

    en.wikipedia.org/wiki/Markov_blanket

    In a Bayesian network, the Markov boundary of node A includes its parents, children and the other parents of all of its children.. In statistics and machine learning, when one wants to infer a random variable with a set of variables, usually a subset is enough, and other variables are useless.

  8. Neuro-symbolic AI - Wikipedia

    en.wikipedia.org/wiki/Neuro-symbolic_AI

    Approaches for integration are diverse. [10] Henry Kautz's taxonomy of neuro-symbolic architectures [11] follows, along with some examples: . Symbolic Neural symbolic is the current approach of many neural models in natural language processing, where words or subword tokens are the ultimate input and output of large language models.

  9. Inductive logic programming - Wikipedia

    en.wikipedia.org/wiki/Inductive_logic_programming

    Inductive logic programming has adopted several different learning settings, the most common of which are learning from entailment and learning from interpretations. [16] In both cases, the input is provided in the form of background knowledge B, a logical theory (commonly in the form of clauses used in logic programming), as well as positive and negative examples, denoted + and respectively.