Search results
Results from the WOW.Com Content Network
The coefficient of variation may not have any meaning for data on an interval scale. [2] For example, most temperature scales (e.g., Celsius, Fahrenheit etc.) are interval scales with arbitrary zeros, so the computed coefficient of variation would be different depending on the scale used.
A temperature coefficient describes the relative change of a physical property that is associated with a given change in temperature. For a property R that changes when the temperature changes by dT , the temperature coefficient α is defined by the following equation:
In fluid dynamics, normalized root mean square deviation (NRMSD), coefficient of variation (CV), and percent RMS are used to quantify the uniformity of flow behavior such as velocity profile, temperature distribution, or gas species concentration. The value is compared to industry standards to optimize the design of flow and thermal equipment ...
The coefficient α varies with the temperature and some materials have a very high variation; see for example the variation vs. temperature of the volumetric coefficient for a semicrystalline polypropylene (PP) at different pressure, and the variation of the linear coefficient vs. temperature for some steel grades (from bottom to top: ferritic ...
In thermal physics and thermodynamics, the heat capacity ratio, also known as the adiabatic index, the ratio of specific heats, or Laplace's coefficient, is the ratio of the heat capacity at constant pressure (C P) to heat capacity at constant volume (C V).
The general definition of the heat transfer coefficient is: = where: : heat flux (W/m²); i.e., thermal power per unit area, = ˙ /: difference in temperature between the solid surface and surrounding fluid area (K)
However, it is common to say ‘heat flow’ to mean ‘heat content’. [1] The equation of heat flow is given by Fourier's law of heat conduction. Rate of heat flow = - (heat transfer coefficient) * (area of the body) * (variation of the temperature) / (length of the material) The formula for the rate of heat flow is:
In thermodynamics, the thermal efficiency is a dimensionless performance measure of a device that uses thermal energy, such as an internal combustion engine, steam turbine, steam engine, boiler, furnace, refrigerator, ACs etc.