Search results
Results from the WOW.Com Content Network
Test methods for the water-cement ratio and fineness modulus). 1919 – Effect of Curing Condition on Wear and Strength of Concrete (Describing 120 tests on cylinder-shaped samples and 300 tests on cubic samples in various moisture conditions and testing periods varying from 3 days to 4 months).
ρ is the sample particle density, kg·m −3 ε is the volume porosity of the bed (dimensionless) δP is the pressure drop across the bed, Pa l is the cylinder length, m η is the air dynamic viscosity, Pa·s Q is the flowrate, m 3 ·s −1. It can be seen that the specific surface is proportional to the square root of the ratio of pressure to ...
GGBS cement also produces a smoother, more defect-free surface, due to the fineness of the GGBS particles. Dirt does not adhere to GGBS concrete as easily as concrete made with Portland cement, reducing maintenance costs. GGBS cement prevents the occurrence of efflorescence, the staining of concrete surfaces by calcium carbonate deposits.
Cement block construction examples from the Multiplex Manufacturing Company of Toledo, Ohio, in 1905. A cement is a binder, a chemical substance used for construction that sets, hardens, and adheres to other materials to bind them together. Cement is seldom used on its own, but rather to bind sand and gravel together. Cement mixed with fine ...
The effect of the water-to-cement (w/c) ratio onto the mechanical strength of concrete was first studied by René Féret (1892) in France, and then by Duff A. Abrams (1918) (inventor of the concrete slump test) in the USA, and by Jean Bolomey (1929) in Switzerland.
The Fineness Modulus (FM) is an empirical figure obtained by adding the total percentage of the sample of an aggregate retained on each of a specified series of sieves, dividing the sum by 100.
Portland cement is the most common type of cement in general use around the world as a basic ingredient of concrete, mortar, stucco, and non-specialty grout. It was developed from other types of hydraulic lime in England in the early 19th century by Joseph Aspdin , and is usually made from limestone .
The test is carried out using a metal mould in the shape of a conical frustum known as a slump cone or Abrams cone, that is open at both ends and has attached handles.The tool typically has an internal diameter of 100 millimetres (3.9 in) at the top and of 200 millimetres (7.9 in) at the bottom with a height of 305 millimetres (12.0 in).The cone is placed on a hard non-absorbent surface.