Search results
Results from the WOW.Com Content Network
The Michaelis constant is defined as the concentration of substrate at which the reaction rate is half of . [6] Biochemical reactions involving a single substrate are often assumed to follow Michaelis–Menten kinetics, without regard to the model's underlying assumptions.
When used to model enzyme rates in vivo , for example, to model a metabolic pathway, this representation is inadequate because under these conditions product is present. As a result, when building computer models of metabolism [ 1 ] or other enzymatic processes, it is better to use the reversible form of the Michaelis–Menten equation.
Eadie–Hofstee plot of v against v/a for Michaelis–Menten kinetics. In biochemistry, an Eadie–Hofstee plot (or Eadie–Hofstee diagram) is a graphical representation of the Michaelis–Menten equation in enzyme kinetics. It has been known by various different names, including Eadie plot, Hofstee plot and Augustinsson plot.
In the Michaelis-Menten model, the enzyme binds to the substrate yielding an enzyme substrate complex, which can either go backwards by dissociating or go forward by forming a product. [2] The dissociation rate constant is defined using K off. [2] The Michaelis-Menten constant is denoted by K m and is represented by the equation K m = (K off ...
The best known plots of the Michaelis–Menten equation, including the double-reciprocal plot of / against /, [2] the Hanes plot of / against , [3] and the Eadie–Hofstee plot [4] [5] of against / are all plots in observation space, with each observation represented by a point, and the parameters determined from the slope and intercepts of the lines that result.
The result is equivalent to the Michaelis–Menten kinetics of reactions catalyzed at a site on an enzyme. The rate equation is complex, and the reaction order is not clear. In experimental work, usually two extreme cases are looked for in order to prove the mechanism. In them, the rate-determining step can be:
This notation demonstrates that similar to the Michaelis–Menten equation, where the rate of reaction depends on the percent of the enzyme population interacting with substrate, the effect of the inhibitor is a result of the percent of the enzyme population interacting with inhibitor.
A halogen addition reaction is a simple organic reaction where a halogen molecule is added to the carbon–carbon double bond of an alkene functional group. [1] The general chemical formula of the halogen addition reaction is: C=C + X 2 → X−C−C−X (X represents the halogens bromine or chlorine, and in this case, a solvent could be CH 2 ...