Search results
Results from the WOW.Com Content Network
Numerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals. Many differential equations cannot be solved exactly.
Order of accuracy — rate at which numerical solution of differential equation converges to exact solution; Series acceleration — methods to accelerate the speed of convergence of a series Aitken's delta-squared process — most useful for linearly converging sequences; Minimum polynomial extrapolation — for vector sequences; Richardson ...
The sign problem is one of the major unsolved problems in the physics of many-particle systems, impeding progress in many areas: Condensed matter physics — It prevents the numerical solution of systems with a high density of strongly correlated electrons, such as the Hubbard model. [1]
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
However, if the Euler method is applied to this equation with step size =, then the numerical solution is qualitatively wrong: It oscillates and grows (see the figure). This is what it means to be unstable. If a smaller step size is used, for instance =, then the numerical solution does decay to zero.
The following is a list of notable unsolved problems grouped into broad areas of physics. [1] Some of the major unsolved problems in physics are theoretical, meaning that existing theories seem incapable of explaining a certain observed phenomenon or experimental result.
[1] Like all problems in numerical analysis, careful attention is paid to the stability and convergence of the numerical solutions. In this line, much attention is paid to the gauge conditions, coordinates, and various formulations of the Einstein equations and the effect they have on the ability to produce accurate numerical solutions.
as a solution of the differential equation. Strictly speaking though, it does not satisfy the differential equation at =, because the function is not differentiable there. This suggests that the idea of a solution be extended to allow for solutions that are not everywhere differentiable, thus motivating the following definition.