Search results
Results from the WOW.Com Content Network
A well-known gimbal lock incident happened in the Apollo 11 Moon mission. On this spacecraft, a set of gimbals was used on an inertial measurement unit (IMU). The engineers were aware of the gimbal lock problem but had declined to use a fourth gimbal. [5] Some of the reasoning behind this decision is apparent from the following quote:
Gimbal lock constrains maneuvering and it would be beneficial to eliminate the slip rings and bearings of the gimbals. Therefore, some systems use fluid bearings or a flotation chamber to mount a gyrostabilized platform. These systems can have very high precisions (e.g., Advanced Inertial Reference Sphere). Like all gyrostabilized platforms ...
Intrinsic rotation angle cannot be read from a single gimbal, so there has to be more than one gimbal in a spacecraft. Normally there are at least three for redundancy. There is also a relation to the well-known gimbal lock problem of mechanical engineering. [8]
While Euler angles are oftentimes the most straightforward representation to visualize, they can cause problems for highly-maneuverable systems because of a phenomenon known as Gimbal lock. A rotation matrix, on the other hand, provides a full description of the attitude at the expense of requiring nine values instead of three.
If the gimbal tilts to track the object from the horizon but must stop at 90 degrees, the entire telescope must pan 180 degrees to follow the object from zenith down to the opposite horizon. When there is a full-circle azimuth range and full 180-degree elevation range, all points can be reached without the need for an instantaneous 180-degree ...
It’s a problem exacerbated by the fact that companies are launching far more frequently than government space programs ever have. SpaceX, for example, launched nearly 140 rockets in 2024 alone ...
The LN-3 system was designed to constantly monitor critical parameters, and warn the pilot in case of a malfunction. Depending on the problem the pilot could switch-off the system, or continue in a dead reckoning mode. In case of serious self-diagnosed problems the system would auto shut-down.
Gimbal lock is a problem when the derivative of the map is not full rank, which occurs with Euler angles and Tait–Bryan angles, but not for the other choices. The quaternion representation has none of these problems (being a two-to-one mapping everywhere), but it has 4 parameters with a condition (unit length), which sometimes makes it harder ...