Search results
Results from the WOW.Com Content Network
Quantity (common name/s) (Common) symbol/s Defining equation SI unit Dimension Temperature gradient: No standard symbol K⋅m −1: ΘL −1: Thermal conduction rate, thermal current, thermal/heat flux, thermal power transfer
Up to 99.63 °C (the boiling point of water at 0.1 MPa), at this pressure water exists as a liquid. Above that, it exists as water vapor. Note that the boiling point of 100.0 °C is at a pressure of 0.101325 MPa (1 atm), which is the average atmospheric pressure.
Since the speed of the Earth around the Sun is about 30 km/s, a comet's speed relative to the Earth can range from 12 to 72 km/s, the latter corresponding to 2592 MJ/kg. If a comet with this speed fell to the Earth it would gain another 63 MJ/kg, yielding a total of 2655 MJ/kg with a speed of 72.9 km/s.
In general, the study of heat conduction is based on several principles. Heat flow is a form of energy flow, and as such it is meaningful to speak of the time rate of flow of heat into a region of space. The time rate of heat flow into a region V is given by a time-dependent quantity q t (V).
The contribution of the muscle to the specific heat of the body is approximately 47%, and the contribution of the fat and skin is approximately 24%. The specific heat of tissues range from ~0.7 kJ · kg−1 · °C−1 for tooth (enamel) to 4.2 kJ · kg−1 · °C−1 for eye (sclera). [13]
The specific heat capacities of iron, granite, and hydrogen gas are about 449 J⋅kg −1 ⋅K −1, 790 J⋅kg −1 ⋅K −1, and 14300 J⋅kg −1 ⋅K −1, respectively. [4] While the substance is undergoing a phase transition , such as melting or boiling, its specific heat capacity is technically undefined, because the heat goes into ...
The "grand calorie" (also "kilocalorie", "kilogram-calorie", or "food calorie"; "kcal" or "Cal") is 1000 cal, that is, exactly 4184 J. It was originally defined so that the heat capacity of 1 kg of water would be 1 kcal/°C. With these units of heat energy, the units of heat capacity are 1 cal/°C = 4.184 J/K ; 1 kcal/°C = 4184 J/K.
The calorie is defined as the amount of thermal energy necessary to raise the temperature of one gram of water by 1 Celsius degree, from a temperature of 14.5 °C, at a pressure of 1 atm. For thermochemistry a calorie of 4.184 J is used, but other calories have also been defined, such as the International Steam Table calorie of 4.1868 J.