Search results
Results from the WOW.Com Content Network
Neutron stars, including pulsars, can be as small as about 12 miles across—if Earth rotated at the same speed as one of these stars, an Earth day would be nearly 4,300 hours long.
In rotation-powered pulsars, the beam is the result of the rotational energy of the neutron star, which generates an electrical field and very strong magnetic field, resulting in the acceleration of protons and electrons on the star surface and the creation of an electromagnetic beam emanating from the poles of the magnetic field.
The system consists of one tiny planet with a mass of 0.02 ± 0.002 Earth masses and two Super-Earths with masses 4.3 ± 0.2 and 3.9 ± 0.2 times that of Earth, assuming that the pulsar has a mass of 1.4 solar masses. [70] They most likely formed from a protoplanetary disk, [1] probably generated from the partial destruction of a companion star ...
PSR J0952–0607 is a massive millisecond pulsar in a binary system, located between 3,200–5,700 light-years (970–1,740 pc) from Earth in the constellation Sextans. [6] It holds the record for being the most massive neutron star known as of 2022, with a mass 2.35 ± 0.17 times that of the Sun—potentially close to the Tolman–Oppenheimer–Volkoff mass upper limit for neutron stars.
Rotating radio transients (RRATs) are sources of short, moderately bright, radio pulses, which were first discovered in 2006. [1] RRATs are thought to be pulsars, i.e. rotating magnetised neutron stars which emit more sporadically and/or with higher pulse-to-pulse variability than the bulk of the known pulsars.
Millisecond pulsars have been detected in radio, X-ray, and gamma ray portions of the electromagnetic spectrum. The leading hypothesis for the origin of millisecond pulsars is that they are old, rapidly rotating neutron stars that have been spun up or "recycled" through accretion of matter from a companion star in a close binary system.
PSR J0737−3039 is the first known double pulsar.It consists of two neutron stars emitting electromagnetic waves in the radio wavelength in a relativistic binary system.The two pulsars are known as PSR J0737−3039A and PSR J0737−3039B.
PSR J1748−2446ad is the fastest-spinning pulsar known, at 716 Hz (times per second), [2] or 42,960 revolutions per minute.This pulsar was discovered by Jason W. T. Hessels of McGill University on November 10, 2004, and confirmed on January 8, 2005.