Search results
Results from the WOW.Com Content Network
The nonequilibrium thermodynamic state in plants is achieved by continuous alternation of phases of solar energy consumption as a result of photosynthesis and subsequent biochemical reactions, as a result of which adenosine triphosphate (ATP) is synthesized in the daytime, and the subsequent release of energy during the splitting of ATP mainly ...
In general outline, photosynthesis is the opposite of cellular respiration: while photosynthesis is a process of reduction of carbon dioxide to carbohydrates, cellular respiration is the oxidation of carbohydrates or other nutrients to carbon dioxide. Nutrients used in cellular respiration include carbohydrates, amino acids and fatty acids.
Photosynthesis refers to the biological process that photosynthetic cells use to synthesize organic compounds from inorganic starting materials using sunlight. [61] What has been primarily implicated as exhibiting non-trivial quantum behaviors is the light reaction stage of photosynthesis.
Radiation reaching a plant contains entropy as well as energy, and combining those two concepts the exergy can be determined. This sort of analysis is known as exergy analysis or second law analysis, and the exergy represents a measure of the useful work, i.e., the useful part of radiation which can be transformed into other forms of energy.
The underlying force driving these reactions is the Gibbs free energy of the reactants relative to the products. If donor and acceptor (the reactants) are of higher free energy than the reaction products, the electron transfer may occur spontaneously. The Gibbs free energy is the energy available ("free") to do work.
The photosynthetic efficiency (i.e. oxygenic photosynthesis efficiency) is the fraction of light energy converted into chemical energy during photosynthesis in green plants and algae. Photosynthesis can be described by the simplified chemical reaction 6 H 2 O + 6 CO 2 + energy → C 6 H 12 O 6 + 6 O 2
A producer is any organism that performs photosynthesis. [9] Producers are important because they convert energy from the sun into a storable and usable chemical form of energy, glucose, [1] as well as oxygen. The producers themselves can use the energy stored in glucose to perform cellular respiration.
An important example is the formation of adenosine triphosphate (ATP) by the movement of hydrogen ions (H +) across a membrane during cellular respiration or photosynthesis. An ion gradient has potential energy and can be used to power chemical reactions when the ions pass through a channel (red).