enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dihybrid cross - Wikipedia

    en.wikipedia.org/wiki/Dihybrid_cross

    This cross results in the expected phenotypic ratio of 9:3:3:1. Another example is listed in the table below and illustrates the process of a dihybrid cross between pea plants with multiple traits and their phenotypic ratio patterns. Dihybrid crosses are easily visualized using a 4 x 4 Punnett square.

  3. Punnett square - Wikipedia

    en.wikipedia.org/wiki/Punnett_square

    The forked-line method (also known as the tree method and the branching system) can also solve dihybrid and multi-hybrid crosses. A problem is converted to a series of monohybrid crosses, and the results are combined in a tree. However, a tree produces the same result as a Punnett square in less time and with more clarity.

  4. File:Dihybrid cross.svg - Wikipedia

    en.wikipedia.org/wiki/File:Dihybrid_cross.svg

    English: This diagram illustrates a dihybrid cross using a Punnett square. The traits are short tail (S), long tail (s), brown coat (B) and white coat (b). The traits are short tail (S), long tail (s), brown coat (B) and white coat (b).

  5. Reciprocal cross - Wikipedia

    en.wikipedia.org/wiki/Reciprocal_cross

    In genetics, a reciprocal cross is a breeding experiment designed to test the role of parental sex on a given inheritance pattern. [1] All parent organisms must be true breeding to properly carry out such an experiment. In one cross, a male expressing the trait of interest will be crossed with a female not expressing the trait.

  6. Test cross - Wikipedia

    en.wikipedia.org/wiki/Test_cross

    The first uses of test crosses were in Gregor Mendel’s experiments in plant hybridization.While studying the inheritance of dominant and recessive traits in pea plants, he explains that the “signification” (now termed zygosity) of an individual for a dominant trait is determined by the expression patterns of the following generation.

  7. Mendelian inheritance - Wikipedia

    en.wikipedia.org/wiki/Mendelian_inheritance

    Mendel found support for this law in his dihybrid cross experiments. In his monohybrid crosses, an idealized 3:1 ratio between dominant and recessive phenotypes resulted. In dihybrid crosses, however, he found a 9:3:3:1 ratios. This shows that each of the two alleles is inherited independently from the other, with a 3:1 phenotypic ratio for each.

  8. Sex linkage - Wikipedia

    en.wikipedia.org/wiki/Sex_linkage

    Inheritance of Y-linked genes can occur in two ways: complete inheritance and incomplete inheritance. [20] Complete Y-linkage results when a gene is only found on a certain area on the Y chromosome either because there is no allele i.e. a copy of that gene, on the X chromosome or because it does not exchange with the X chromosome's allele. [ 20 ]

  9. Pedigree chart - Wikipedia

    en.wikipedia.org/wiki/Pedigree_chart

    The word pedigree is a corruption of the Anglo-Norman French pé de grue or "crane's foot", either because the typical lines and split lines (each split leading to different offspring of the one parent line) resemble the thin leg and foot of a crane [3] or because such a mark was used to denote succession in pedigree charts.