Search results
Results from the WOW.Com Content Network
The first alpha version of OpenCV was released to the public at the IEEE Conference on Computer Vision and Pattern Recognition in 2000, and five betas were released between 2001 and 2005. The first 1.0 version was released in 2006. A version 1.1 "pre-release" was released in October 2008. The second major release of the OpenCV was in October 2009.
Gary Bradski is an American scientist, engineer, entrepreneur, and author. He co-founded Industrial Perception, a company that developed perception applications for industrial robotic application (since acquired by Google in 2012 [2]) and has worked on the OpenCV Computer Vision library, as well as published a book on that library.
OpenVX is an open, royalty-free standard for cross-platform acceleration of computer vision applications. It is designed by the Khronos Group to facilitate portable, optimized and power-efficient processing of methods for vision algorithms.
Perspective-n-Point [1] is the problem of estimating the pose of a calibrated camera given a set of n 3D points in the world and their corresponding 2D projections in the image.
OpenCV has Python bindings with a rich set of features for computer vision and image processing. [212] Python is commonly used in artificial intelligence projects and machine learning projects with the help of libraries like TensorFlow, Keras, Pytorch, scikit-learn and the Logic language ProbLog.
Objects detected with OpenCV's Deep Neural Network module (dnn) by using a YOLOv3 model trained on COCO dataset capable to detect objects of 80 common classes. Object detection is a computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos. [1]
Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]
As most definitions of color difference are distances within a color space, the standard means of determining distances is the Euclidean distance.If one presently has an RGB (red, green, blue) tuple and wishes to find the color difference, computationally one of the easiest is to consider R, G, B linear dimensions defining the color space.