enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Estimation of covariance matrices - Wikipedia

    en.wikipedia.org/wiki/Estimation_of_covariance...

    The sample covariance matrix (SCM) is an unbiased and efficient estimator of the covariance matrix if the space of covariance matrices is viewed as an extrinsic convex cone in R p×p; however, measured using the intrinsic geometry of positive-definite matrices, the SCM is a biased and inefficient estimator. [1]

  3. Bias of an estimator - Wikipedia

    en.wikipedia.org/wiki/Bias_of_an_estimator

    The theory of median-unbiased estimators was revived by George W. Brown in 1947: [8]. An estimate of a one-dimensional parameter θ will be said to be median-unbiased, if, for fixed θ, the median of the distribution of the estimate is at the value θ; i.e., the estimate underestimates just as often as it overestimates.

  4. MINQUE - Wikipedia

    en.wikipedia.org/wiki/MINQUE

    MINQUE estimators can be obtained without the invariance criteria, in which case the estimator is only unbiased and minimizes the norm. [2] Such estimators have slightly different constraints on the minimization problem. The model can be extended to estimate covariance components. [3]

  5. Pearson correlation coefficient - Wikipedia

    en.wikipedia.org/wiki/Pearson_correlation...

    Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.

  6. Sample mean and covariance - Wikipedia

    en.wikipedia.org/wiki/Sample_mean_and_covariance

    For each random variable, the sample mean is a good estimator of the population mean, where a "good" estimator is defined as being efficient and unbiased. Of course the estimator will likely not be the true value of the population mean since different samples drawn from the same distribution will give different sample means and hence different ...

  7. Generalized least squares - Wikipedia

    en.wikipedia.org/wiki/Generalized_least_squares

    The model is estimated by OLS or another consistent (but inefficient) estimator, and the residuals are used to build a consistent estimator of the errors covariance matrix (to do so, one often needs to examine the model adding additional constraints; for example, if the errors follow a time series process, a statistician generally needs some ...

  8. Minimum mean square error - Wikipedia

    en.wikipedia.org/wiki/Minimum_mean_square_error

    Standard method like Gauss elimination can be used to solve the matrix equation for .A more numerically stable method is provided by QR decomposition method. Since the matrix is a symmetric positive definite matrix, can be solved twice as fast with the Cholesky decomposition, while for large sparse systems conjugate gradient method is more effective.

  9. Bootstrapping (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_(statistics)

    GPR is a Bayesian non-linear regression method. A Gaussian process (GP) is a collection of random variables, any finite number of which have a joint Gaussian (normal) distribution. A GP is defined by a mean function and a covariance function, which specify the mean vectors and covariance matrices for each finite collection of the random variables.