enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Whitehead theorem - Wikipedia

    en.wikipedia.org/wiki/Whitehead_theorem

    For instance, take X= S 2 × RP 3 and Y= RP 2 × S 3. Then X and Y have the same fundamental group, namely the cyclic group Z/2, and the same universal cover, namely S 2 × S 3; thus, they have isomorphic homotopy groups. On the other hand their homology groups are different (as can be seen from the Künneth formula); thus, X and Y are not ...

  3. Universal coefficient theorem - Wikipedia

    en.wikipedia.org/wiki/Universal_coefficient_theorem

    Here might be the simplicial homology, or more generally the singular homology. The usual proof of this result is a pure piece of homological algebra about chain complexes of free abelian groups . The form of the result is that other coefficients A may be used, at the cost of using a Tor functor .

  4. CW complex - Wikipedia

    en.wikipedia.org/wiki/CW_complex

    It was initially introduced by J. H. C. Whitehead to meet the needs of homotopy theory. [2] CW complexes have better categorical properties than simplicial complexes, but still retain a combinatorial nature that allows for computation (often with a much smaller complex). The C in CW stands for "closure-finite", and the W for "weak" topology. [2]

  5. Alexander duality - Wikipedia

    en.wikipedia.org/wiki/Alexander_duality

    0, 1, 0, 0. This does work out, predicting the complement's reduced Betti numbers. The prototype here is the Jordan curve theorem, which topologically concerns the complement of a circle in the Riemann sphere. It also tells the same story. We have the honest Betti numbers 1, 1, 0. of the circle, and therefore 0, 1, 1. by flipping over and 1, 1, 0

  6. Spanier–Whitehead duality - Wikipedia

    en.wikipedia.org/wiki/Spanier–Whitehead_duality

    In mathematics, Spanier–Whitehead duality is a duality theory in homotopy theory, based on a geometrical idea that a topological space X may be considered as dual to its complement in the n-sphere, where n is large enough. Its origins lie in Alexander duality theory, in homology theory, concerning complements in manifolds.

  7. Whitehead's lemma (Lie algebra) - Wikipedia

    en.wikipedia.org/wiki/Whitehead's_lemma_(Lie...

    In homological algebra, Whitehead's lemmas (named after J. H. C. Whitehead) represent a series of statements regarding representation theory of finite-dimensional, semisimple Lie algebras in characteristic zero. Historically, they are regarded as leading to the discovery of Lie algebra cohomology. [1]

  8. Reduced homology - Wikipedia

    en.wikipedia.org/wiki/Reduced_homology

    H i (P) = {0}. More generally if X is a simplicial complex or finite CW complex, then the group H 0 (X) is the free abelian group with the connected components of X as generators. The reduced homology should replace this group, of rank r say, by one of rank r − 1. Otherwise the homology groups should remain unchanged.

  9. Singular homology - Wikipedia

    en.wikipedia.org/wiki/Singular_homology

    Example of singular 1-chains: The violet and orange 1-chains cannot be realized as a boundary of a 2-chain. The usual construction of singular homology proceeds by defining formal sums of simplices, which may be understood to be elements of a free abelian group, and then showing that we can define a certain group, the homology group of the topological space, involving the boundary operator.