enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Generalized Stokes theorem - Wikipedia

    en.wikipedia.org/wiki/Generalized_Stokes_theorem

    In particular, the fundamental theorem of calculus is the special case where the manifold is a line segment, Green’s theorem and Stokes' theorem are the cases of a surface in or , and the divergence theorem is the case of a volume in . [2] Hence, the theorem is sometimes referred to as the fundamental theorem of multivariate calculus.

  3. Stokes' theorem - Wikipedia

    en.wikipedia.org/wiki/Stokes'_theorem

    An illustration of Stokes' theorem, with surface Σ, its boundary ∂Σ and the normal vector n.The direction of positive circulation of the bounding contour ∂Σ, and the direction n of positive flux through the surface Σ, are related by a right-hand-rule (i.e., the right hand the fingers circulate along ∂Σ and the thumb is directed along n).

  4. Discrete exterior calculus - Wikipedia

    en.wikipedia.org/wiki/Discrete_exterior_calculus

    In this notation, Stokes' theorem reads as = . In finite element analysis, the first stage is often the approximation of the domain of interest by a triangulation, T. For example, a curve would be approximated as a union of straight line segments; a surface would be approximated by a union of triangles, whose edges are straight line segments ...

  5. Exterior derivative - Wikipedia

    en.wikipedia.org/wiki/Exterior_derivative

    The theorem of de Rham shows that this map is actually an isomorphism, a far-reaching generalization of the Poincaré lemma. As suggested by the generalized Stokes' theorem, the exterior derivative is the "dual" of the boundary map on singular simplices.

  6. Rayleigh problem - Wikipedia

    en.wikipedia.org/wiki/Rayleigh_problem

    In fluid dynamics, Rayleigh problem also known as Stokes first problem is a problem of determining the flow created by a sudden movement of an infinitely long plate from rest, named after Lord Rayleigh and Sir George Stokes. This is considered as one of the simplest unsteady problems that have an exact solution for the Navier-Stokes equations.

  7. Kutta condition - Wikipedia

    en.wikipedia.org/wiki/Kutta_condition

    The airfoil is generating lift, and the magnitude of the lift is given by the Kutta–Joukowski theorem. [5]: § 4.5 One of the consequences of the Kutta condition is that the airflow over the topside of the airfoil travels much faster than the airflow under the underside.

  8. Stokes problem - Wikipedia

    en.wikipedia.org/wiki/Stokes_problem

    This is considered one of the simplest unsteady problems that has an exact solution for the Navier–Stokes equations. [1] [2] In turbulent flow, this is still named a Stokes boundary layer, but now one has to rely on experiments, numerical simulations or approximate methods in order to obtain useful information on the flow.

  9. Stokes approximation and artificial time - Wikipedia

    en.wikipedia.org/wiki/Stokes_approximation_and...

    The nonlinearity of the convection term is the main problem in solving a stationary or nonstationary Navier-Stokes equation or Euler equation problems. Stoke incorporated ‘the method of artificial compressibility’ to solve these problems.