Search results
Results from the WOW.Com Content Network
The Controllability Gramian involves integration of the state-transition matrix of a system. A simpler condition for controllability is a rank condition analogous to the Kalman rank condition for time-invariant systems.
In control theory, we may need to find out whether or not a system such as ˙ = + () = + is controllable, where , , and are, respectively, , , and matrices for a system with inputs, state variables and outputs.
Observability is a measure of how well internal states of a system can be inferred from knowledge of its external outputs. In control theory, the observability and controllability of a linear system are mathematical duals. The concept of observability was introduced by the Hungarian-American engineer Rudolf E. Kálmán for linear dynamic systems.
The phrase H ∞ control comes from the name of the mathematical space over which the optimization takes place: H ∞ is the Hardy space of matrix-valued functions that are analytic and bounded in the open right-half of the complex plane defined by Re(s) > 0; the H ∞ norm is the supremum singular value of the matrix over that
In control theory, a state observer, state estimator, or Luenberger observer is a system that provides an estimate of the internal state of a given real system, from measurements of the input and output of the real system. It is typically computer-implemented, and provides the basis of many practical applications.
One can determine if the LTI system is or is not observable simply by looking at the pair (,). Then, we can say that the following statements are equivalent: 1. The pair (,) is observable. 2. The matrix
In control theory, a Kalman decomposition provides a mathematical means to convert a representation of any linear time-invariant (LTI) control system to a form in which the system can be decomposed into a standard form which makes clear the observable and controllable components of the system.
Network controllability concerns the structural controllability of a network. Controllability describes our ability to guide a dynamical system from any initial state to any desired final state in finite time, with a suitable choice of inputs. This definition agrees well with our intuitive notion of control.