Search results
Results from the WOW.Com Content Network
In computer science, a red–black tree is a self-balancing binary search tree data structure noted for fast storage and retrieval of ordered information. The nodes in a red-black tree hold an extra "color" bit, often drawn as red and black, which help ensure that the tree is always approximately balanced.
A left-leaning red-black tree satisfies all the properties of a red-black tree: Every node is either red or black. A NIL node is considered black. A red node does not have a red child. Every path from a given node to any of its descendant NIL nodes goes through the same number of black nodes. The root is black (by convention).
Most of the research and improvements for R-trees aims at improving the way the tree is built and can be grouped into two objectives: building an efficient tree from scratch (known as bulk-loading) and performing changes on an existing tree (insertion and deletion). R-trees do not guarantee good worst-case performance, but generally perform ...
AA trees are named after their originator, Swedish computer scientist Arne Andersson. [1] AA trees are a variation of the red–black tree, a form of binary search tree which supports efficient addition and deletion of entries. Unlike red–black trees, red nodes on an AA tree can only be added as a right subchild.
To turn a regular search tree into an order statistic tree, the nodes of the tree need to store one additional value, which is the size of the subtree rooted at that node (i.e., the number of nodes below it). All operations that modify the tree must adjust this information to preserve the invariant that size[x] = size[left[x]] + size[right[x]] + 1
Both AVL trees and red–black (RB) trees are self-balancing binary search trees and they are related mathematically. Indeed, every AVL tree can be colored red–black, [14] but there are RB trees which are not AVL balanced. For maintaining the AVL (or RB) tree's invariants, rotations play an important role.
To delete a node x from the treap, if x is a leaf of the tree, simply remove it. If x has a single child z, remove x from the tree and make z be the child of the parent of x (or make z the root of the tree if x had no parent).
WAVL trees, like red–black trees, use only a constant number of tree rotations, and the constant is even better than for red–black trees. [1] [2] WAVL trees were introduced by Haeupler, Sen & Tarjan (2015). The same authors also provided a common view of AVL trees, WAVL trees, and red–black trees as all being a type of rank-balanced tree. [2]