Search results
Results from the WOW.Com Content Network
For repeating patterns that begin immediately after the decimal point, the result of the conversion is the fraction with the pattern as a numerator, and the same number of nines as a denominator. For example: 0. 5 = 5/9 0. 62 = 62/99 0. 264 = 264/999 0. 6291 = 6291/9999
A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...
So a fixed-point scheme might use a string of 8 decimal digits with the decimal point in the middle, whereby "00012345" would represent 0001.2345. In scientific notation, the given number is scaled by a power of 10, so that it lies within a specific range—typically between 1 and 10, with the radix point appearing immediately after the first ...
Decimal fractions were first developed and used by the Chinese in the form of rod calculus in the 1st century BC, and then spread to the rest of the world. [6] [7] J. Lennart Berggren notes that positional decimal fractions were first used in the Arab by mathematician Abu'l-Hasan al-Uqlidisi as early as the 10th century. [8]
Working directly with decimal (base-10) fractions can avoid the rounding errors that otherwise typically occur when converting between decimal fractions (common in human-entered data, such as measurements or financial information) and binary (base-2) fractions. The advantage of decimal floating-point representation over decimal fixed-point and ...
In English and many other languages (including many that are written right-to-left), the integer part is at the left of the radix point, and the fraction part at the right of it. [24] A radix point is most often used in decimal (base 10) notation, when it is more commonly called the decimal point (the prefix deci-implying base 10).
Any such decimal fraction, i.e.: d n = 0 for n > N, may be converted to its equivalent infinite decimal expansion by replacing d N by d N − 1 and replacing all subsequent 0s by 9s (see 0.999...). In summary, every real number that is not a decimal fraction has a unique infinite decimal expansion.
Conversion of the fractional part: Consider 0.375, the fractional part of 12.375. To convert it into a binary fraction, multiply the fraction by 2, take the integer part and repeat with the new fraction by 2 until a fraction of zero is found or until the precision limit is reached which is 23 fraction digits for IEEE 754 binary32 format.