Search results
Results from the WOW.Com Content Network
Luminescence dating methods are not radiometric dating methods in that they do not rely on abundances of isotopes to calculate age. Instead, they are a consequence of background radiation on certain minerals. Over time, ionizing radiation is absorbed by mineral grains in sediments and archaeological materials such as quartz and potassium ...
The radioactive system behind hafnium–tungsten dating is a two-stage decay as follows: 182 72 Hf → 182 73 Ta e − ν e 182 73 Ta → 182 74 W e − ν e. The first decay has a half-life of 8.9 million years, while the second has a half-life of only 114 days, [7] such that the intermediate nuclide tantalum-182 (182 Ta) can effectively be ignored.
Rhenium–osmium dating is a form of radiometric dating based on the beta decay of the isotope 187 Re to 187 Os. This normally occurs with a half-life of 41.6 × 10 9 y, [ 1 ] but studies using fully ionised 187 Re atoms have found that this can decrease to only 33 y. [ 2 ]
The rubidium–strontium dating method (Rb–Sr) is a radiometric dating technique, used by scientists to determine the age of rocks and minerals from their content of specific isotopes of rubidium (87 Rb) and strontium (87 Sr, 86 Sr). One of the two naturally occurring isotopes of rubidium, 87 Rb, decays to 87 Sr with a half-life of 49.23 ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate
Argon–argon (or 40 Ar/ 39 Ar) dating is a radiometric dating method invented to supersede potassium–argon (K/Ar) dating in accuracy. The older method required splitting samples into two for separate potassium and argon measurements, while the newer method requires only one rock fragment or mineral grain and uses a single measurement of argon isotopes.
Coal and oil began to be burned in large quantities during the 1800s. Both coal and oil are sufficiently old that they contain little detectable 14 C and, as a result, the CO 2 released substantially diluted the atmospheric 14 C / 12 C ratio. Dating an object from the early 20th century hence gives an apparent date older than the true date.
Potassium–calcium dating, abbreviated K–Ca dating, is a radiometric dating method used in geochronology. It is based upon measuring the ratio of a parent isotope of potassium (40 K) to a daughter isotope of calcium (40 Ca). [1] This form of radioactive decay is accomplished through beta decay. Calcium is common in many minerals, with 40