enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    The roots of this polynomial, and hence the eigenvalues, are 2 and 3. The algebraic multiplicity of each eigenvalue is 2; in other words they are both double roots. The sum of the algebraic multiplicities of all distinct eigenvalues is μ A = 4 = n, the order of the characteristic polynomial and the dimension of A.

  3. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  4. Eigenfunction - Wikipedia

    en.wikipedia.org/wiki/Eigenfunction

    Each value of λ corresponds to one or more eigenfunctions. If multiple linearly independent eigenfunctions have the same eigenvalue, the eigenvalue is said to be degenerate and the maximum number of linearly independent eigenfunctions associated with the same eigenvalue is the eigenvalue's degree of degeneracy or geometric multiplicity. [4] [5]

  5. Generalized eigenvector - Wikipedia

    en.wikipedia.org/wiki/Generalized_eigenvector

    This example is simple but clearly illustrates the point. This type of matrix is used frequently in textbooks. [39] [40] [41] Suppose = (). Then there is only one eigenvalue, =, and its algebraic multiplicity is =.

  6. Spectrum of a matrix - Wikipedia

    en.wikipedia.org/wiki/Spectrum_of_a_matrix

    Thus the elements of the spectrum are precisely the eigenvalues of T, and the multiplicity of an eigenvalue λ in the spectrum equals the dimension of the generalized eigenspace of T for λ (also called the algebraic multiplicity of λ). Now, fix a basis B of V over K and suppose M ∈ Mat K (V) is a matrix.

  7. Eigenvalues and eigenvectors - en.wikipedia.org

    en.wikipedia.org/.../Eigenvalues_and_eigenvectors

    In linear algebra, it is often important to know which vectors have their directions unchanged by a given linear transformation. An eigenvector (/ ˈ aɪ ɡ ən-/ EYE-gən-) or ch

  8. Strongly regular graph - Wikipedia

    en.wikipedia.org/wiki/Strongly_regular_graph

    There are thus exactly three eigenvalues for a strongly regular matrix. Conversely, a connected regular graph with only three eigenvalues is strongly regular. [10] Following the terminology in much of the strongly regular graph literature, the larger eigenvalue is called r with multiplicity f and the smaller one is called s with multiplicity g.

  9. Eigenvalues and eigenvectors of the second derivative

    en.wikipedia.org/wiki/Eigenvalues_and...

    Note that there are 2n + 1 of these values, but only the first n + 1 are unique. The (n + 1)th value gives us the zero vector as an eigenvector with eigenvalue 0, which is trivial. This can be seen by returning to the original recurrence. So we consider only the first n of these values to be the n eigenvalues of the Dirichlet - Neumann problem.