Search results
Results from the WOW.Com Content Network
When manipulating linked lists in-place, care must be taken to not use values that have been invalidated in previous assignments. This makes algorithms for inserting or deleting linked list nodes somewhat subtle. This section gives pseudocode for adding or removing nodes from singly, doubly, and circularly linked lists in-place.
Insertion sort is a simple sorting algorithm that builds the final sorted array (or list) one item at a time by comparisons. It is much less efficient on large lists than more advanced algorithms such as quicksort, heapsort, or merge sort. However, insertion sort provides several advantages:
A linked list in an inconsistent state, caused by application of the naive lock-free deletion algorithm. Dotted lines are links that exist in intermediate states; solid lines represent the final state. Deletion of the node holding a has executed simultaneously with insertion of b after a, causing the insertion to be undone.
The first and last nodes of a doubly linked list for all practical applications are immediately accessible (i.e., accessible without traversal, and usually called head and tail) and therefore allow traversal of the list from the beginning or end of the list, respectively: e.g., traversing the list from beginning to end, or from end to beginning, in a search of the list for a node with specific ...
In a doubly-linked list implementation and assuming no allocation/deallocation overhead, the time complexity of all deque operations is O(1). Additionally, the time complexity of insertion or deletion in the middle, given an iterator, is O(1); however, the time complexity of random access by index is O(n).
Insertion sort applied to a list of n elements, assumed to be all different and initially in random order. On average, half the elements in a list A 1... A j are less than element A j+1, and half are greater. Therefore, the algorithm compares the (j + 1) th element to be inserted on the average with half the already sorted sub-list, so t j = j ...
Linked data structures may also incur in substantial memory allocation overhead (if nodes are allocated individually) and frustrate memory paging and processor caching algorithms (since they generally have poor locality of reference). In some cases, linked data structures may also use more memory (for the link fields) than competing array ...
A schematic picture of the skip list data structure. Each box with an arrow represents a pointer and a row is a linked list giving a sparse subsequence; the numbered boxes (in yellow) at the bottom represent the ordered data sequence. Searching proceeds downwards from the sparsest subsequence at the top until consecutive elements bracketing the ...