Search results
Results from the WOW.Com Content Network
At the equator, the solar rotation period is 24.47 days. This is called the sidereal rotation period, and should not be confused with the synodic rotation period of 26.24 days, which is the time for a fixed feature on the Sun to rotate to the same apparent position as viewed from Earth (the Earth's orbital rotation is in the same direction as the Sun's rotation).
The tangential speed of Earth's rotation at a point on Earth can be approximated by multiplying the speed at the equator by the cosine of the latitude. [42] For example, the Kennedy Space Center is located at latitude 28.59° N, which yields a speed of: cos(28.59°) × 1,674.4 km/h = 1,470.2 km/h.
Earth at seasonal points in its orbit (not to scale) Earth orbit (yellow) compared to a circle (gray) Earth orbits the Sun at an average distance of 149.60 million km (92.96 million mi), or 8.317 light-minutes, [1] in a counterclockwise direction as viewed from above the Northern Hemisphere.
Rotation period with respect to distant stars, the sidereal rotation period (compared to Earth's mean Solar days) Synodic rotation period (mean Solar day) Apparent rotational period viewed from Earth Sun [i] 25.379995 days (Carrington rotation) 35 days (high latitude) 25 d 9 h 7 m 11.6 s 35 d ~28 days (equatorial) [2] Mercury: 58.6462 days [3 ...
The Solar System is traveling at an average speed of 230 km/s (828,000 km/h) or 143 mi/s (514,000 mph) within its trajectory around the Galactic Center, [3] a speed at which an object could circumnavigate the Earth's equator in 2 minutes and 54 seconds; that speed corresponds to approximately 1/1300 of the speed of light.
The rotation rate through the interior is roughly equal to the rotation rate at mid-latitudes, i.e. in-between the rate at the slow poles and the fast equator. Recent results from helioseismology indicate that the tachocline is located at a radius of at most 0.70 times the solar radius (measured from the core, i.e., the surface is at 1 solar ...
Just as the Sun and Moon appear to rise in the east and set in the west due to the rotation of Earth, so do the stars. Both solar time and sidereal time make use of the regularity of Earth's rotation about its polar axis: solar time is reckoned according to the position of the Sun in the sky while sidereal time is based approximately on the ...
The Sun has an equatorial rotation speed of ~2 km/s; its differential rotation implies that the angular velocity decreases with increased latitude. The poles make one rotation every 34.3 days and the equator every 25.05 days, as measured relative to distant stars (sidereal rotation).