Search results
Results from the WOW.Com Content Network
For example, balanced two-phase power can be obtained from a three-phase network by using two specially constructed transformers, with taps at 50% and 86.6% of the primary voltage. This Scott T connection produces a true two-phase system with 90° time difference between the phases.
The power factor in a single-phase circuit (or balanced three-phase circuit) can be measured with the wattmeter-ammeter-voltmeter method, where the power in watts is divided by the product of measured voltage and current. The power factor of a balanced polyphase circuit is the same as that of any phase. The power factor of an unbalanced ...
A rotary phase converter is a three-phase motor with special starting arrangements and power factor correction that produces balanced three-phase voltages. When properly designed, these rotary converters can allow satisfactory operation of a three-phase motor on a single-phase source.
Angle notation can easily describe leading and lagging current: . [1] In this equation, the value of theta is the important factor for leading and lagging current. As mentioned in the introduction above, leading or lagging current represents a time shift between the current and voltage sine curves, which is represented by the angle by which the curve is ahead or behind of where it would be ...
A three-phase induction motor that is spinning under single-phase power applied to terminals L1 and L2 will generate an electric potential (voltage) across terminal L3 in respect with L1 and L2. However, L1 to L3 and L2 to L3 will be 120 degrees out of phase with the input voltage, thus creating three-phase power.
Power and voltage are specified in the same way as single-phase systems. However, due to differences in what these terms usually represent in three-phase systems, the relationships for the derived units are different. Specifically, power is given as total (not per-phase) power, and voltage is line-to-line voltage.
One voltage cycle of a three-phase system. A polyphase system (the term coined by Silvanus Thompson) is a means of distributing alternating-current (AC) electrical power that utilizes more than one AC phase, which refers to the phase offset value (in degrees) between AC in multiple conducting wires; phases may also refer to the corresponding terminals and conductors, as in color codes.
In a normal alternating current power system, the current varies sinusoidally at a specific frequency, usually 50 or 60 hertz.When a linear time-invariant electrical load is connected to the system, it draws a sinusoidal current at the same frequency as the voltage, although not always in phase with the voltage).