Search results
Results from the WOW.Com Content Network
For instance if a player prefers "Yes", then that set of strategies is not a Nash equilibrium. But if every player prefers not to switch (or is indifferent between switching and not) then the strategy profile is a Nash equilibrium. Thus, each strategy in a Nash equilibrium is a best response to the other players' strategies in that equilibrium ...
However, many games do have pure strategy Nash equilibria (e.g. the Coordination game, the Prisoner's dilemma, the Stag hunt). Further, games can have both pure strategy and mixed strategy equilibria. An easy example is the pure coordination game, where in addition to the pure strategies (A,A) and (B,B) a mixed equilibrium exists in which both ...
A Nash equilibrium is a strategy profile (a strategy profile specifies a strategy for every player, e.g. in the above prisoners' dilemma game (cooperate, defect) specifies that prisoner 1 plays cooperate and prisoner 2 plays defect) in which every strategy played by every agent (agent i) is a best response to every other strategy played by all the other opponents (agents j for every j≠i) .
The mixed strategy Nash equilibrium is inefficient: the players will miscoordinate with probability 13/25, leaving each player with an expected return of 6/5 (less than the payoff of 2 from each's less favored pure strategy equilibrium). It remains unclear how expectations would form that would result in a particular equilibrium being played out.
The potential function is a useful tool to analyze equilibrium properties of games, since the incentives of all players are mapped into one function, and the set of pure Nash equilibria can be found by locating the local optima of the potential function. Convergence and finite-time convergence of an iterated game towards a Nash equilibrium can ...
In game theory, the best response is the strategy (or strategies) which produces the most favorable outcome for a player, taking other players' strategies as given. [1] The concept of a best response is central to John Nash's best-known contribution, the Nash equilibrium, the point at which each player in a game has selected the best response (or one of the best responses) to the other players ...
Anshelevich et al. studied network design games and showed that a pure strategy Nash equilibrium always exists and the price of stability of this game is at most the nth harmonic number in directed graphs. For undirected graphs Anshelevich and others presented a tight bound on the price of stability of 4/3 for a single source and two players case.
There is a unique pure strategy Nash equilibrium. This equilibrium can be found by iterated elimination of weakly dominated strategies. [4] Intuitively, guessing any number higher than 2/3 of what you expect others to guess on average cannot be part of a Nash equilibrium. The highest possible average that would occur if everyone guessed 100 is ...