Search results
Results from the WOW.Com Content Network
Dynamic viscosity is a material property which describes the resistance of a fluid to shearing flows. It corresponds roughly to the intuitive notion of a fluid's 'thickness'. For instance, honey has a much higher viscosity than water. Viscosity is measured using a viscometer. Measured values span several orders of magnitude.
This measured kinematic viscosity is generally expressed in seconds of flow time which can be converted into centistokes (cSt) using a viscosity calculator. [ 2 ] Flow cups are manufactured using high grade aluminium alloy with stainless steel orifices (where indicated), flow cups are available with a range of UKAS / ISO 17025 certified ...
Zahn Cup . A Zahn cup is a viscosity measurement device used in the paint industry. It is commonly a stainless steel cup with a tiny hole drilled in the centre of the bottom of the cup.
Paint is a non-newtonian fluid. A flat surface covered with white paint is oriented vertically (before taking the picture the flat surface was horizontal, placed on a table). The fluid starts dripping down the surface but, because of its non-newtonian nature, it is subjected to stress due to the gravitational acceleration. Therefore, instead of ...
In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor f D, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe.
The proportionality factor is the dynamic viscosity of the fluid, often simply referred to as the viscosity. It is denoted by the Greek letter mu ( μ ). The dynamic viscosity has the dimensions ( m a s s / l e n g t h ) / t i m e {\displaystyle \mathrm {(mass/length)/time} } , therefore resulting in the SI units and the derived units :
The Herschel–Bulkley fluid is a generalized model of a non-Newtonian fluid, in which the strain experienced by the fluid is related to the stress in a complicated, non-linear way. Three parameters characterize this relationship: the consistency k , the flow index n , and the yield shear stress τ 0 {\displaystyle \tau _{0}} .
The solvent also modifies the curing rate and viscosity of the paint in its liquid state. There are two types of paint: solvent-borne and water-borne paints. Solvent-borne paints use organic solvents as the primary vehicle carrying the solid components in a paint formulation, whereas water-borne paints use water as the continuous medium.