Search results
Results from the WOW.Com Content Network
From top to bottom: x 1/8, x 1/4, x 1/2, x 1, x 2, x 4, x 8. If x is a nonnegative real number, and n is a positive integer, / or denotes the unique nonnegative real n th root of x, that is, the unique nonnegative real number y such that =.
The only known powers of 2 with all digits even are 2 1 = 2, 2 2 = 4, 2 3 = 8, 2 6 = 64 and 2 11 = 2048. [12] The first 3 powers of 2 with all but last digit odd is 2 4 = 16, 2 5 = 32 and 2 9 = 512. The next such power of 2 of form 2 n should have n of at least 6 digits.
The Erdős–Moser equation, + + + = (+) where m and k are positive integers, is conjectured to have no solutions other than 1 1 + 2 1 = 3 1. The sums of three cubes cannot equal 4 or 5 modulo 9, but it is unknown whether all remaining integers can be expressed in this form.
Some programming languages, such as Java [60] and J, [61] allow the programmer an explicit access to the positive and negative infinity values as language constants. These can be used as greatest and least elements , as they compare (respectively) greater than or less than all other values.
These infinite ordinals: ω, ω + 1, ω⋅2, ω 2 are among the countably infinite sets. [6] For example, the sequence (with ordinality ω⋅2) of all positive odd integers followed by all positive even integers {1, 3, 5, 7, 9, ...; 2, 4, 6, 8, 10, ...} is an ordering of the set (with cardinality ℵ 0) of positive integers.
Exponential functions with bases 2 and 1/2 In mathematics , the exponential function is the unique real function which maps zero to one and has a derivative equal to its value. The exponential of a variable x {\displaystyle x} is denoted exp x {\displaystyle \exp x} or e x {\displaystyle e^{x}} , with the two ...
11/6 See Who Didn't Vote For De Blasio. A look at how different mapping techniques reveal different voting patterns. 11/5 2013 Election Results. Live returns with ...
The sequence starts with a unary operation (the successor function with n = 0), and continues with the binary operations of addition (n = 1), multiplication (n = 2), exponentiation (n = 3), tetration (n = 4), pentation (n = 5), etc. Various notations have been used to represent hyperoperations.