Search results
Results from the WOW.Com Content Network
The Apollo Command Module had a set of twelve hypergolic thrusters for attitude control, and directional reentry control similar to Gemini. The Apollo Service Module and Lunar Module each had a set of sixteen R-4D hypergolic thrusters, grouped into external clusters of four, to provide both translation and attitude control. The clusters were ...
The R-4D is a small hypergolic rocket engine, originally designed by Marquardt Corporation for use as a reaction control system thruster on vehicles of the Apollo crewed Moon landing program. Aerojet Rocketdyne manufactures and markets modern versions of the R-4D.
RCS quad containing four R-4D thrusters, as used on the Apollo Service Module. Four clusters of four reaction control system (RCS) thrusters (known as "quads") were installed around the upper section of the SM every 90°. The sixteen-thruster arrangement provided rotation and translation control in all three
RCS thrusters: Sixteen × 100 lbf (440 N) in four quads; RCS propellants: Aerozine 50 fuel / Dinitrogen tetroxide (N 2 O 4) oxidizer; RCS specific impulse: 290 s (2.8 km/s) APS propellant mass: 5,187 lb (2,353 kg) stored in two 36-cubic-foot (1.02 m 3) propellant tanks; APS engine: Bell Aerospace LM Ascent Engine (LMAE) and Rocketdyne LMAE ...
Some devices that are used or proposed for use as thrusters are: Cold gas thruster; Electrohydrodynamic thruster, using ionized air (only for use in an atmosphere) Electrodeless plasma thruster, electric propulsion using ponderomotive force; Electrostatic ion thruster, using high-voltage electrodes; Hall effect thruster, a type of ion thruster
The Apollo Lunar Module, used in the Moon landings, employed hypergolic fuels in both the descent and ascent rocket engines. The Apollo spacecraft used the same combination for the Service Propulsion System. Those spacecraft and the Space Shuttle (among others) used hypergolic propellants for their reaction control systems.
Some LESS designs used a single engine under the center, but many used multiple engines around the edge, typically based on the Apollo reaction control system (RCS) thrusters used for attitude control on the command and service module (CSM) and lunar module (LM). These had a thrust of around 100 pounds-force (440 N) each, so putting eight ...
Mission Control first suggested pointing the spacecraft towards Earth and using the small reaction control system (RCS) thrusters on the service module (SM) to add 1.1 ft/s (0.34 m/s) to their velocity away from the Earth, but Borman did not want to lose sight of the S-IVB. After discussion, the crew and Mission Control decided to burn in the ...