Search results
Results from the WOW.Com Content Network
They regulate cell functions including proliferation, gene expression, differentiation, mitosis, cell survival, and apoptosis. [1] MAP kinases are found in eukaryotes only, but they are fairly diverse and encountered in all animals, fungi and plants, and even in an array of unicellular eukaryotes. [citation needed]
Mitogen Activated Protein (MAP) kinase kinase kinase (MAPKKK, [1] MKKK, [2] M3K, [3] or, MAP3K [4]) is a serine/threonine-specific protein kinase which acts upon MAP kinase kinase. Subsequently, MAP kinase kinase activates MAP kinase. Several types of MAPKKK can exist but are mainly characterized by the MAP kinases they activate.
Deregulated kinase activity is a frequent cause of disease, in particular cancer, wherein kinases regulate many aspects that control cell growth, movement and death. Drugs that inhibit specific kinases are being developed to treat several diseases, and some are currently in clinical use, including Gleevec ( imatinib ) and Iressa ( gefitinib ).
One of the first proteins known to be phosphorylated by ERK was a microtubule-associated protein (MAP). As discussed below, many additional targets for phosphorylation by MAPK were later found, and the protein was renamed "mitogen-activated protein kinase" (MAPK). The series of kinases from RAF to MEK to MAPK is an example of a protein kinase ...
In molecular biology, extracellular signal-regulated kinases (ERKs) or classical MAP kinases are widely expressed protein kinase intracellular signalling molecules that are involved in functions including the regulation of meiosis, mitosis, and postmitotic functions in differentiated cells.
Mitogen-activated protein kinase kinase (also known as MAP2K, MEK, MAPKK) is a dual-specificity kinase enzyme which phosphorylates mitogen-activated protein kinase (MAPK). ...
In cell biology, microtubule-associated proteins (MAPs) are proteins that interact with the microtubules of the cellular cytoskeleton. MAPs are integral to the stability of the cell and its internal structures and the transport of components within the cell.
The protein encoded by this gene is a member of the mitogen-activated protein kinase (MAP kinase) family. MAP kinases, also known as extracellular signal-regulated kinases (ERKs), act in a signaling cascade that regulates various cellular processes such as proliferation, differentiation, and cell cycle progression in response to a variety of extracellular signals.