Search results
Results from the WOW.Com Content Network
Active learning is a special case of machine learning in which a learning algorithm can interactively query a human user (or some other information source), to label new data points with the desired outputs. The human user must possess knowledge/expertise in the problem domain, including the ability to consult/research authoritative sources ...
Ensemble learning, including both regression and classification tasks, can be explained using a geometric framework. [15] Within this framework, the output of each individual classifier or regressor for the entire dataset can be viewed as a point in a multi-dimensional space.
In machine learning, crowd wisdom is achieved through ensemble learning. For many problems, the result obtained from an ensemble, a combination of machine learning models, can be more accurate ...
Consequently, for each query, only a small subset of the experts should be queried. This makes MoE in deep learning different from classical MoE. In classical MoE, the output for each query is a weighted sum of all experts' outputs. In deep learning MoE, the output for each query can only involve a few experts' outputs.
Bootstrap aggregating, also called bagging (from bootstrap aggregating) or bootstrapping, is a machine learning (ML) ensemble meta-algorithm designed to improve the stability and accuracy of ML classification and regression algorithms.
Aside from their empirical performance, activation functions also have different mathematical properties: Nonlinear When the activation function is non-linear, then a two-layer neural network can be proven to be a universal function approximator. [6]
An ensemble of models employing the random subspace method can be constructed using the following algorithm: Let the number of training points be N and the number of features in the training data be D. Let L be the number of individual models in the ensemble. For each individual model l, choose n l (n l < N) to be the number of input points for l.
Statistical learning theory is a framework for machine learning drawing from the fields of statistics and functional analysis. [ 1 ] [ 2 ] [ 3 ] Statistical learning theory deals with the statistical inference problem of finding a predictive function based on data.