Search results
Results from the WOW.Com Content Network
Diagram of a chemical synaptic connection. In the nervous system, a synapse [1] is a structure that allows a neuron (or nerve cell) to pass an electrical or chemical signal to another neuron or a target effector cell. Synapses can be classified as either chemical or electrical, depending on the mechanism of signal transmission between neurons.
These are patterns of synaptic activity that produce a long-lasting increase in signal transmission between two neurons. [2] The opposite of LTP is long-term depression, which produces a long-lasting decrease in synaptic strength. It is one of several phenomena underlying synaptic plasticity, the ability of chemical synapses to change their ...
Much of the work on long-lasting synaptic changes between vertebrate neurons (such as long-term potentiation) involves the use of non-physiological experimental stimulation of brain cells. However, some of the physiologically relevant synapse modification mechanisms that have been studied in vertebrate brains do seem to be examples of Hebbian ...
Some neurons can release at least two neurotransmitters at the same time, the other being a cotransmitter, in order to provide the stabilizing negative feedback required for meaningful encoding, in the absence of inhibitory interneurons. [18] Examples include: GABA–glycine co-release. Dopamine–glutamate co-release.
Two molecular mechanisms for synaptic plasticity involve the NMDA and AMPA glutamate receptors. Opening of NMDA channels (which relates to the level of cellular depolarization) leads to a rise in post-synaptic Ca 2+ concentration and this has been linked to long-term potentiation, LTP (as well as to protein kinase activation); strong depolarization of the post-synaptic cell completely ...
A neural circuit is a population of neurons interconnected by synapses to carry out a specific function when activated. [1] Multiple neural circuits interconnect with one another to form large scale brain networks. [2] Neural circuits have inspired the design of artificial neural networks, though there are significant differences.
Chemical synaptic transmission is the transfer of neurotransmitters or neuropeptides from a presynaptic axon to a postsynaptic dendrite. [3] Unlike an electrical synapse, the chemical synapses are separated by a space called the synaptic cleft , typically measured between 15 and 25 nm.
The preliminary contact formed between the motoneuron and the myotube generates synaptic transmission almost immediately, but the signal produced is very weak. There is evidence that Schwann cells may facilitate these preliminary signals by increasing the amount of spontaneous neurotransmitter release through small molecule signals. [5]