enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Taylor's theorem - Wikipedia

    en.wikipedia.org/wiki/Taylor's_theorem

    In calculus, Taylor's theorem gives an approximation of a -times differentiable function around a given point by a polynomial of degree , called the -th-order Taylor polynomial. For a smooth function , the Taylor polynomial is the truncation at the order k {\textstyle k} of the Taylor series of the function.

  3. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    The Taylor series can be used to calculate the value of an entire function at every point, if the value of the function, and of all of its derivatives, are known at a single point. Uses of the Taylor series for analytic functions include: The partial sums (the Taylor polynomials) of the series can be used as approximations of the function ...

  4. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    Taylor's theorem gives a precise bound on how good the approximation is. If f is a polynomial of degree less than or equal to d, then the Taylor polynomial of degree d equals f. The limit of the Taylor polynomials is an infinite series called the Taylor series. The Taylor series is frequently a very good approximation to the original function.

  5. Jet group - Wikipedia

    en.wikipedia.org/wiki/Jet_group

    There is a unique polynomial f p in k variables and of order m such that p is in the image of j m f p. That is, () = ′. The differential data x′ may be transferred to lie over another point y ∈ R n as j m f p (y), the partials of f p over y. Provide J m (R n) with a group structure by taking

  6. Even and odd functions - Wikipedia

    en.wikipedia.org/wiki/Even_and_odd_functions

    The sine function and all of its Taylor polynomials are odd functions. The cosine function and all of its Taylor polynomials are even functions. In mathematics , an even function is a real function such that f ( − x ) = f ( x ) {\displaystyle f(-x)=f(x)} for every x {\displaystyle x} in its domain .

  7. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    Polynomials of degree one, two or three are respectively linear polynomials, quadratic polynomials and cubic polynomials. [8] For higher degrees, the specific names are not commonly used, although quartic polynomial (for degree four) and quintic polynomial (for degree five) are sometimes used. The names for the degrees may be applied to the ...

  8. Power series - Wikipedia

    en.wikipedia.org/wiki/Power_series

    The partial sums of a power series are polynomials, the partial sums of the Taylor series of an analytic function are a sequence of converging polynomial approximations to the function at the center, and a converging power series can be seen as a kind of generalized polynomial with infinitely many terms. Conversely, every polynomial is a power ...

  9. Big O notation - Wikipedia

    en.wikipedia.org/wiki/Big_O_notation

    Big O notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity. Big O is a member of a family of notations invented by German mathematicians Paul Bachmann, [1] Edmund Landau, [2] and others, collectively called Bachmann–Landau notation or asymptotic notation.