Search results
Results from the WOW.Com Content Network
Cyanobacteria is the only prokaryotic group that performs oxygenic photosynthesis. Anoxygenic photosynthetic bacteria use PSI- and PSII-like photosystems, which are pigment protein complexes for capturing light. [5] Both of these photosystems use bacteriochlorophyll. There are multiple hypotheses for how oxygenic photosynthesis evolved.
Autotrophs possibly evolved into heterotrophs when they were at low H 2 partial pressures where the first form of heterotrophy were likely amino acid and clostridial type purine fermentations. [19] It has been suggested that photosynthesis emerged in the presence of faint near infrared light emitted by hydrothermal vents.
Primary nutritional groups are groups of organisms, divided in relation to the nutrition mode according to the sources of energy and carbon, needed for living, growth and reproduction. The sources of energy can be light or chemical compounds; the sources of carbon can be of organic or inorganic origin.
An autotroph is an organism that can convert abiotic sources of energy into energy stored in organic compounds, which can be used by other organisms.Autotrophs produce complex organic compounds (such as carbohydrates, fats, and proteins) using carbon from simple substances such as carbon dioxide, [1] generally using energy from light or inorganic chemical reactions. [2]
Oxygenic photosynthesis is a metabolic pathway facilitated by autotrophs, including plants, algae, and cyanobacteria. This pathway converts inorganic carbon dioxide from the atmosphere or aquatic environment into carbohydrates, using water and energy from light, then releases molecular oxygen as a product
Chloroplasts (from the Greek chloros for green, and plastes for "the one who forms" [31]) are organelles that conduct photosynthesis, where the photosynthetic pigment chlorophyll captures the energy from sunlight, converts it, and stores it in the energy-storage molecules while freeing oxygen from water in plant and algal cells.
A lithoautotroph is an organism which derives energy from reactions of reduced compounds of mineral (inorganic) origin. [1] Two types of lithoautotrophs are distinguished by their energy source; photolithoautotrophs derive their energy from light while chemolithoautotrophs (chemolithotrophs or chemoautotrophs) derive their energy from chemical reactions. [1]
Organisms that contain bacteriochlorophyll conduct photosynthesis to sustain their energy requirements, but the process is anoxygenic and does not produce oxygen as a byproduct. They use wavelengths of light not absorbed by plants or cyanobacteria. Replacement of Mg 2+ with protons gives bacteriophaeophytin (BPh), the phaeophytin form.