Search results
Results from the WOW.Com Content Network
Digital signal processing (DSP) is the use of digital processing, such as by computers or more specialized digital signal processors, to perform a wide variety of signal processing operations. The digital signals processed in this manner are a sequence of numbers that represent samples of a continuous variable in a domain such as time, space ...
Digital signal processing (DSP) algorithms typically require a large number of mathematical operations to be performed quickly and repeatedly on a series of data samples. Signals (perhaps from audio or video sensors) are constantly converted from analog to digital, manipulated digitally, and then converted back to analog form.
In the context of digital signal processing (DSP), a digital signal is a discrete time, quantized amplitude signal. In other words, it is a sampled signal consisting of samples that take on values from a discrete set (a countable set that can be mapped one-to-one to a subset of integers).
Digital signal processing is the processing of digitized discrete-time sampled signals. Processing is done by general-purpose computers or by digital circuits such as ASICs , field-programmable gate arrays or specialized digital signal processors .
According to 2012 estimation, Qualcomm shipped 1.2 billion DSP cores inside its system on a chip (SoCs) (average 2.3 DSP core per SoC) in 2011, and 1.5 billion cores were planned for 2012, making the QDSP6 the most shipped architecture of DSP [12] (CEVA had around 1 billion of DSP cores shipped in 2011 with 90% of IP-licensable DSP market [13]).
Digital signal processing (DSP) is the study of signals in a digital representation and the processing methods of these signals. DSP and analog signal processing are subsets of signal processing . It has three major subfields: audio signal processing , digital image processing and speech processing .
In digital signal processing (DSP), parallel processing is a technique duplicating function units to operate different tasks (signals) simultaneously. [1] Accordingly, we can perform the same processing for different signals on the corresponding duplicated function units.
Pipelining is an important technique used in several applications such as digital signal processing (DSP) systems, microprocessors, etc. It originates from the idea of a water pipe with continuous water sent in without waiting for the water in the pipe to come out. Accordingly, it results in speed enhancement for the critical path in most DSP ...