enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Constrained least squares - Wikipedia

    en.wikipedia.org/wiki/Constrained_least_squares

    In constrained least squares one solves a linear least squares problem with an additional constraint on the solution. [ 1 ] [ 2 ] This means, the unconstrained equation X β = y {\displaystyle \mathbf {X} {\boldsymbol {\beta }}=\mathbf {y} } must be fit as closely as possible (in the least squares sense) while ensuring that some other property ...

  3. Least squares - Wikipedia

    en.wikipedia.org/wiki/Least_squares

    The result of fitting a set of data points with a quadratic function Conic fitting a set of points using least-squares approximation. In regression analysis, least squares is a parameter estimation method based on minimizing the sum of the squares of the residuals (a residual being the difference between an observed value and the fitted value provided by a model) made in the results of each ...

  4. Constrained optimization - Wikipedia

    en.wikipedia.org/wiki/Constrained_optimization

    If the constrained problem has only equality constraints, the method of Lagrange multipliers can be used to convert it into an unconstrained problem whose number of variables is the original number of variables plus the original number of equality constraints. Alternatively, if the constraints are all equality constraints and are all linear ...

  5. Quadratic programming - Wikipedia

    en.wikipedia.org/wiki/Quadratic_programming

    Quadratic programming is particularly simple when Q is positive definite and there are only equality constraints; specifically, the solution process is linear. By using Lagrange multipliers and seeking the extremum of the Lagrangian, it may be readily shown that the solution to the equality constrained problem

  6. Linear least squares - Wikipedia

    en.wikipedia.org/wiki/Linear_least_squares

    Linear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression , including variants for ordinary (unweighted), weighted , and generalized (correlated) residuals .

  7. Convex optimization - Wikipedia

    en.wikipedia.org/wiki/Convex_optimization

    The equality constraint functions :, =, …,, are affine transformations, that is, of the form: () =, where is a vector and is a scalar. The feasible set C {\displaystyle C} of the optimization problem consists of all points x ∈ D {\displaystyle \mathbf {x} \in {\mathcal {D}}} satisfying the inequality and the equality constraints.

  8. Regularized least squares - Wikipedia

    en.wikipedia.org/wiki/Regularized_least_squares

    Regularized least squares (RLS) is a family of methods for solving the least-squares problem while using regularization to further constrain the resulting solution. RLS is used for two main reasons. The first comes up when the number of variables in the linear system exceeds the number of observations.

  9. Constraint (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Constraint_(mathematics)

    In mathematics, a constraint is a condition of an optimization problem that the solution must satisfy. There are several types of constraints—primarily equality constraints, inequality constraints, and integer constraints. The set of candidate solutions that satisfy all constraints is called the feasible set. [1]