Search results
Results from the WOW.Com Content Network
Cantor defined cardinality in terms of bijective functions: two sets have the same cardinality if, and only if, there exists a bijective function between them. Between any two real numbers a < b, no matter how close they are to each other, there are always infinitely many other real numbers, and Cantor showed that they are as many as those ...
As is standard in set theory, we denote by the least infinite ordinal, which has cardinality ; it may be identified with the set of natural numbers.. A number of cardinal characteristics naturally arise as cardinal invariants for ideals which are closely connected with the structure of the reals, such as the ideal of Lebesgue null sets and the ideal of meagre sets.
This follows from the fact that a continuous function is completely determined by its value on a dense subset of its domain. [2] Thus, the cardinality of the set of continuous real-valued functions on the reals is no greater than the cardinality of the set of real-valued functions of a rational variable. By cardinal arithmetic:
Continuum hypothesis, a conjecture of Georg Cantor that there is no cardinal number between that of countably infinite sets and the cardinality of the set of all real numbers. The latter cardinality is equal to the cardinality of the set of all subsets of a countably infinite set. Cardinality of the continuum, a cardinal number that represents ...
The cardinality of the continuum is the size of the set of real numbers. The continuum hypothesis is sometimes stated by saying that no cardinality lies between that of the continuum and that of the natural numbers , ℵ 0 {\displaystyle \aleph _{0}} , or alternatively, that c = ℵ 1 {\displaystyle {\mathfrak {c}}=\aleph _{1}} .
The oldest definition of the cardinality of a set X (implicit in Cantor and explicit in Frege and Principia Mathematica) is as the set of all sets that are equinumerous with X: this does not work in ZFC or other related systems of axiomatic set theory because this collection is too large to be a set, but it does work in type theory and in New ...
The continuum hypothesis states that the set of real numbers has minimal possible cardinality which is greater than the cardinality of the set of integers. That is, every set, S, of real numbers can either be mapped one-to-one into the integers or the real numbers can be mapped one-to-one into S.
The most frequently used cardinal function is the function that assigns to a set A its cardinality, denoted by |A|. Aleph numbers and beth numbers can both be seen as cardinal functions defined on ordinal numbers. Cardinal arithmetic operations are examples of functions from cardinal numbers (or pairs of them) to cardinal numbers.