Search results
Results from the WOW.Com Content Network
The formation of biofilms is a complex process and is dependent upon the availability of light as well as the relationships between the microorganisms. Biofilms serve a variety of roles in aquatic, terrestrial, and extreme environments; these roles include functions which are both beneficial and detrimental to the environment.
Other than chemicals, enzymes have been used to degrade the biofilm matrix and eject biofilm cells forcibly. First shown in P. aeruginosa, a glycosyl hydrolase PslG can trigger biofilm disassembly by disrupting exopolysaccharide matrix in biofilms effectively and can be used in combination with antibiotics to kill the cells released from biofilms.
The final stage of biofilm formation is known as development, and is the stage in which the biofilm is established and may only change in shape and size. [ citation needed ] The development of a biofilm may allow for an aggregate cell colony to be increasingly tolerant [ 23 ] or resistant to antibiotics .
Biofilms in marine environments Various biofilm components (including bacteria, algae, and fungi) are embedded in a matrix of extracellular polymeric substances.. An intertidal bioflim is a biofilm that forms on the intertidal region of bodies of water.
Biofilms can consist of a multitude of bacteria, fungi, and algae which are able to absorb, immobilize, and degrade many common pollutants found in wastewater.By harnessing a natural phenomenon, biofilm-mediated remediation is an environmentally friendly method for environmental cleanup. [3]
EPS is found in the matrix of other microbial biofilms such as microalgal biofilms. The formation of biofilm and structure of EPS share a lot of similarities with bacterial ones. The formation of biofilm starts with reversible absorption of floating cells to the surface. Followed by production of EPS, the adsorption will get irreversible.
Three key traits have evolved in S. mutans and increased its virulence by enhancing its adaptability to the oral cavity: increased organic acid production, the capacity to form biofilms on the hard surfaces of teeth, and the ability to survive and thrive in a low pH environment.
One biological system that might be of key importance in the future development of architecture is bacterial biofilm. The term biofilm refers to complex heterogeneous structures comprising different populations of microorganisms that attach and form a community on inert (e.g. rocks, glass, plastic) or organic (e.g. skin, cuticle, mucosa) surfaces.