Search results
Results from the WOW.Com Content Network
A spring with spaces between the coils can be compressed, and the same formula holds for compression, with F s and x both negative in that case. [4] Graphical derivation. According to this formula, the graph of the applied force F s as a function of the displacement x will be a straight line passing through the origin, whose slope is k.
Both force and displacement are vectors. The work done is given by the dot product of the two vectors, where the result is a scalar. When the force F is constant and the angle θ between the force and the displacement s is also constant, then the work done is given by: =
The electromagnetic force acts between electric charges, and the gravitational force acts between masses. All other forces in nature derive from these four fundamental interactions operating within quantum mechanics, including the constraints introduced by the Schrödinger equation and the Pauli exclusion principle. [67]
[18]: 14–15 The torque can vanish even when the force is non-zero, if the body is located at the reference point (=) or if the force and the displacement vector are directed along the same line. The angular momentum of a collection of point masses, and thus of an extended body, is found by adding the contributions from each of the points.
Relationship between displacement and velocity. = Relationship between current and voltage, this is also known as Ohm's law. = Relationship between force and displacement, also known as Hooke's law. The negative sign is dropped in this equation because the sign is factored into the way the arrow is pointing in the bond graph.
When putting two springs in their equilibrium positions in series attached at the end to a block and then displacing it from that equilibrium, each of the springs will experience corresponding displacements x 1 and x 2 for a total displacement of x 1 + x 2. We will be looking for an equation for the force on the block that looks like:
If the force is perpendicular to the displacement vector r, the moment arm will be equal to the distance to the centre, and torque will be a maximum for the given force. The equation for the magnitude of a torque, arising from a perpendicular force: = ().
The force is proportional to the product of the two masses and inversely proportional to the square of the distance between them: [11] Diagram of two masses attracting one another = where F is the force between the masses; G is the Newtonian constant of gravitation (6.674 × 10 −11 m 3 ⋅kg −1 ⋅s −2);