Search results
Results from the WOW.Com Content Network
Subtracting from both sides and dividing by 2 by two yields the power-reduction formula for sine: = ( ()). The half-angle formula for sine can be obtained by replacing θ {\displaystyle \theta } with θ / 2 {\displaystyle \theta /2} and taking the square-root of both sides: sin ( θ / 2 ) = ± ( 1 − cos θ ) / 2 ...
The angle opposite the leg of length 1 (this angle can be labeled φ = π/2 − θ) has cotangent equal to the length of the other leg, and cosecant equal to the length of the hypotenuse. In that way, this trigonometric identity involving the cotangent and the cosecant also follows from the Pythagorean theorem.
The expression cos x + i sin x is sometimes abbreviated to cis x. The formula is important because it connects complex numbers and trigonometry . By expanding the left hand side and then comparing the real and imaginary parts under the assumption that x is real, it is possible to derive useful expressions for cos nx and sin nx in terms of cos x ...
This geometric argument relies on definitions of arc length and area, which act as assumptions, so it is rather a condition imposed in construction of trigonometric functions than a provable property. [2] For the sine function, we can handle other values. If θ > π /2, then θ > 1. But sin θ ≤ 1 (because of the Pythagorean identity), so sin ...
The fixed point iteration x n+1 = cos(x n) with initial value x 0 = −1 converges to the Dottie number. Zero is the only real fixed point of the sine function; in other words the only intersection of the sine function and the identity function is sin ( 0 ) = 0 {\displaystyle \sin(0)=0} .
A trigonometric polynomial can be considered a periodic function on the real line, with period some divisor of , or as a function on the unit circle.. Trigonometric polynomials are dense in the space of continuous functions on the unit circle, with the uniform norm; [4] this is a special case of the Stone–Weierstrass theorem.
If units of degrees are intended, the degree sign must be explicitly shown (sin x°, cos x°, etc.). Using this standard notation, the argument x for the trigonometric functions satisfies the relationship x = (180 x / π )°, so that, for example, sin π = sin 180° when we take x = π .
[1] [2] One reason for this is that they can greatly simplify differential equations that do not need to be answered with absolute precision. There are a number of ways to demonstrate the validity of the small-angle approximations. The most direct method is to truncate the Maclaurin series for each of the trigonometric functions.