enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Causal inference - Wikipedia

    en.wikipedia.org/wiki/Causal_inference

    Causal inference is conducted via the study of systems where the measure of one variable is suspected to affect the measure of another. Causal inference is conducted with regard to the scientific method. The first step of causal inference is to formulate a falsifiable null hypothesis, which is subsequently tested with statistical methods.

  3. Causal analysis - Wikipedia

    en.wikipedia.org/wiki/Causal_analysis

    Exploratory causal analysis, also known as "data causality" or "causal discovery" [3] is the use of statistical algorithms to infer associations in observed data sets that are potentially causal under strict assumptions. ECA is a type of causal inference distinct from causal modeling and treatment effects in randomized controlled trials. [4]

  4. Rubin causal model - Wikipedia

    en.wikipedia.org/wiki/Rubin_causal_model

    Rubin defines a causal effect: Intuitively, the causal effect of one treatment, E, over another, C, for a particular unit and an interval of time from to is the difference between what would have happened at time if the unit had been exposed to E initiated at and what would have happened at if the unit had been exposed to C initiated at : 'If an hour ago I had taken two aspirins instead of ...

  5. Collider (statistics) - Wikipedia

    en.wikipedia.org/wiki/Collider_(statistics)

    In statistics and causal graphs, a variable is a collider when it is causally influenced by two or more variables. The name "collider" reflects the fact that in graphical models, the arrow heads from variables that lead into the collider appear to "collide" on the node that is the collider. [1]

  6. Exploratory causal analysis - Wikipedia

    en.wikipedia.org/wiki/Exploratory_causal_analysis

    Causal analysis is the field of experimental design and statistical analysis pertaining to establishing cause and effect. [1] [2] Exploratory causal analysis (ECA), also known as data causality or causal discovery [3] is the use of statistical algorithms to infer associations in observed data sets that are potentially causal under strict assumptions.

  7. Bradford Hill criteria - Wikipedia

    en.wikipedia.org/wiki/Bradford_Hill_criteria

    Causal inference – Branch of statistics concerned with inferring causal relationships between variables; Granger causality – Statistical hypothesis test for forecasting; Koch's postulates – Four criteria showing a causal relationship between a causative microbe and a disease; Public health – Promoting health through informed choices

  8. James Robins - Wikipedia

    en.wikipedia.org/wiki/James_Robins

    In 1986, Robins introduced a new framework for drawing causal inference from observational data. [4] In this and other articles published around the same time, Robins showed that in non-experimental data, exposure is almost always time-dependent, and that standard methods such as regression are therefore almost always biased.

  9. Causal model - Wikipedia

    en.wikipedia.org/wiki/Causal_model

    Causal models are mathematical models representing causal relationships within an individual system or population. They facilitate inferences about causal relationships from statistical data. They can teach us a good deal about the epistemology of causation, and about the relationship between causation and probability.