Search results
Results from the WOW.Com Content Network
The transpose (indicated by T) of any row vector is a column vector, and the transpose of any column vector is a row vector: […] = [] and [] = […]. The set of all row vectors with n entries in a given field (such as the real numbers ) forms an n -dimensional vector space ; similarly, the set of all column vectors with m entries forms an m ...
Typically, the matrix is assumed to be stored in row-major or column-major order (i.e., contiguous rows or columns, respectively, arranged consecutively). Performing an in-place transpose (in-situ transpose) is most difficult when N ≠ M , i.e. for a non-square (rectangular) matrix, where it involves a complex permutation of the data elements ...
The transpose of a matrix A, denoted by A T, [3] ⊤ A, A ⊤, , [4] [5] A′, [6] A tr, t A or A t, may be constructed by any one of the following methods: Reflect A over its main diagonal (which runs from top-left to bottom-right) to obtain A T; Write the rows of A as the columns of A T; Write the columns of A as the rows of A T
Multiplying a matrix M by either or on either the left or the right will permute either the rows or columns of M by either π or π −1.The details are a bit tricky. To begin with, when we permute the entries of a vector (, …,) by some permutation π, we move the entry of the input vector into the () slot of the output vector.
The row space of this matrix is the vector space spanned by the row vectors. The column vectors of a matrix. The column space of this matrix is the vector space spanned by the column vectors. In linear algebra, the column space (also called the range or image) of a matrix A is the span (set of all possible linear combinations) of its column ...
Multiplication of X by e i extracts the i-th column, while multiplication by B i puts it into the desired position in the final vector. Alternatively, the linear sum can be expressed using the Kronecker product : vec ( X ) = ∑ i = 1 n e i ⊗ X e i {\displaystyle \operatorname {vec} (\mathbf {X} )=\sum _{i=1}^{n}\mathbf {e} _{i}\otimes ...
In a document-term matrix, rows correspond to documents in the collection and columns correspond to terms. This matrix is a specific instance of a document-feature matrix where "features" may refer to other properties of a document besides terms. [1]
The commutation matrix is a special type of permutation matrix, and is therefore orthogonal.In particular, K (m,n) is equal to , where is the permutation over {, …,} for which