enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Secant line - Wikipedia

    en.wikipedia.org/wiki/Secant_line

    The secant lines PQ are the approximations to the tangent line. In calculus, this idea is the geometric definition of the derivative. The tangent line at point P is a secant line of the curve. A tangent line to a curve at a point P may be a secant line to that curve if it intersects the curve in at least one point other than P.

  3. Tangent - Wikipedia

    en.wikipedia.org/wiki/Tangent

    The geometrical idea of the tangent line as the limit of secant lines serves as the motivation for analytical methods that are used to find tangent lines explicitly. The question of finding the tangent line to a graph, or the tangent line problem, was one of the central questions leading to the development of calculus in the 17th

  4. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    [b] Even though the tangent line only touches a single point at the point of tangency, it can be approximated by a line that goes through two points. This is known as a secant line. If the two points that the secant line goes through are close together, then the secant line closely resembles the tangent line, and, as a result, its slope is also ...

  5. Tangent lines to circles - Wikipedia

    en.wikipedia.org/wiki/Tangent_lines_to_circles

    No tangent line can be drawn through a point within a circle, since any such line must be a secant line. However, two tangent lines can be drawn to a circle from a point P outside of the circle. The geometrical figure of a circle and both tangent lines likewise has a reflection symmetry about the radial axis joining P to the center point O of ...

  6. Trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_functions

    With the exception of the sine (which was adopted from Indian mathematics), the other five modern trigonometric functions were discovered by Persian and Arab mathematicians, including the cosine, tangent, cotangent, secant and cosecant. [31] Al-Khwārizmī (c. 780–850) produced tables of sines, cosines and tangents.

  7. Secant - Wikipedia

    en.wikipedia.org/wiki/Secant

    Secant is a term in mathematics derived from the Latin secare ("to cut"). It may refer to: a secant line, in geometry; the secant variety, in algebraic geometry; secant (trigonometry) (Latin: secans), the multiplicative inverse (or reciprocal) trigonometric function of the cosine

  8. Trigonometry - Wikipedia

    en.wikipedia.org/wiki/Trigonometry

    The cosine, cotangent, and cosecant are so named because they are respectively the sine, tangent, and secant of the complementary angle abbreviated to "co-". [32] With these functions, one can answer virtually all questions about arbitrary triangles by using the law of sines and the law of cosines. [33]

  9. Slope - Wikipedia

    en.wikipedia.org/wiki/Slope

    is the slope of a secant line to the curve. For a line, the secant between any two points is the line itself, but this is not the case for any other type of curve. For example, the slope of the secant intersecting y = x 2 at (0,0) and (3,9) is 3. (The slope of the tangent at x = 3 ⁄ 2 is also 3 − a consequence of the mean value theorem.)