enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Regular dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Regular_dodecahedron

    A regular dodecahedron or pentagonal dodecahedron [notes 1] is a dodecahedron composed of regular pentagonal faces, three meeting at each vertex. It is an example of Platonic solids, described as cosmic stellation by Plato in his dialogues, and it was used as part of Solar System proposed by Johannes Kepler. However, the regular dodecahedron ...

  3. Dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Dodecahedron

    A tetartoid (also tetragonal pentagonal dodecahedron, pentagon-tritetrahedron, and tetrahedric pentagon dodecahedron) is a dodecahedron with chiral tetrahedral symmetry (T). Like the regular dodecahedron, it has twelve identical pentagonal faces, with three meeting in each of the 20 vertices. However, the pentagons are not regular and the ...

  4. Rhombicosidodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombicosidodecahedron

    The rhombicosidodecahedron shares its vertex arrangement with three nonconvex uniform polyhedra: the small stellated truncated dodecahedron, the small dodecicosidodecahedron (having the triangular and pentagonal faces in common), and the small rhombidodecahedron (having the square faces in common).

  5. Rhombic dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombic_dodecahedron

    In geometry, the rhombic dodecahedron is a convex polyhedron with 12 congruent rhombic faces. It has 24 edges, and 14 vertices of 2 types. As a Catalan solid, it is the dual polyhedron of the cuboctahedron. As a parallelohedron, the rhombic dodecahedron can be used to tesselate its copies in space creating a rhombic dodecahedral honeycomb.

  6. Icosidodecahedron - Wikipedia

    en.wikipedia.org/wiki/Icosidodecahedron

    The surface area of an icosidodecahedron A can be determined by calculating the area of all pentagonal faces. The volume of an icosidodecahedron V can be determined by slicing it off into two pentagonal rotunda, after which summing up their volumes.

  7. Table of polyhedron dihedral angles - Wikipedia

    en.wikipedia.org/wiki/Table_of_polyhedron...

    Rhombic dodecahedron (Dual of cuboctahedron) — V(3.4.3.4) arccos (-⁠ 1 / 2 ⁠) = ⁠ 2 π / 3 ⁠ 120° Rhombic triacontahedron (Dual of icosidodecahedron) — V(3.5.3.5) arccos (-⁠ √ 5 +1 / 4 ⁠) = ⁠ 4 π / 5 ⁠ 144° Medial rhombic triacontahedron (Dual of dodecadodecahedron) — V(5. ⁠ 5 / 2 ⁠.5. ⁠ 5 / 2 ⁠) arccos ...

  8. Great dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Great_dodecahedron

    The compound of small stellated dodecahedron and great dodecahedron is a polyhedron compound where the great dodecahedron is internal to its dual, the small stellated dodecahedron. This can be seen as one of the two three-dimensional equivalents of the compound of two pentagrams ({10/4} " decagram "); this series continues into the fourth ...

  9. Pentakis dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Pentakis_dodecahedron

    Let be the golden ratio.The 12 points given by (,,) and cyclic permutations of these coordinates are the vertices of a regular icosahedron.Its dual regular dodecahedron, whose edges intersect those of the icosahedron at right angles, has as vertices the points (,,) together with the points (, /,) and cyclic permutations of these coordinates.