Search results
Results from the WOW.Com Content Network
Markov chains and continuous-time Markov processes are useful in chemistry when physical systems closely approximate the Markov property. For example, imagine a large number n of molecules in solution in state A, each of which can undergo a chemical reaction to state B with a certain average rate. Perhaps the molecule is an enzyme, and the ...
The Hitting times and stopping times of three samples of Brownian motion. In the study of stochastic processes in mathematics, a hitting time (or first hit time) is the first time at which a given process "hits" a given subset of the state space. Exit times and return times are also examples of hitting times.
A family of Markov chains is said to be rapidly mixing if the mixing time is a polynomial function of some size parameter of the Markov chain, and slowly mixing otherwise. This book is about finite Markov chains, their stationary distributions and mixing times, and methods for determining whether Markov chains are rapidly or slowly mixing. [1] [4]
In probability theory, the mixing time of a Markov chain is the time until the Markov chain is "close" to its steady state distribution.. More precisely, a fundamental result about Markov chains is that a finite state irreducible aperiodic chain has a unique stationary distribution π and, regardless of the initial state, the time-t distribution of the chain converges to π as t tends to infinity.
Another discrete-time process that may be derived from a continuous-time Markov chain is a δ-skeleton—the (discrete-time) Markov chain formed by observing X(t) at intervals of δ units of time. The random variables X (0), X (δ), X (2δ), ... give the sequence of states visited by the δ-skeleton.
A game of snakes and ladders or any other game whose moves are determined entirely by dice is a Markov chain, indeed, an absorbing Markov chain. This is in contrast to card games such as blackjack, where the cards represent a 'memory' of the past moves. To see the difference, consider the probability for a certain event in the game.
The possible values of X i form a countable set S called the state space of the chain. [1] Markov chains are often described by a sequence of directed graphs, where the edges of graph n are labeled by the probabilities of going from one state at time n to the other states at time n + 1, (+ = =).
Example of a stopping time: a hitting time of Brownian motion.The process starts at 0 and is stopped as soon as it hits 1. In probability theory, in particular in the study of stochastic processes, a stopping time (also Markov time, Markov moment, optional stopping time or optional time [1]) is a specific type of “random time”: a random variable whose value is interpreted as the time at ...