enow.com Web Search

  1. Ad

    related to: metal fatigue calculation

Search results

  1. Results from the WOW.Com Content Network
  2. Fatigue (material) - Wikipedia

    en.wikipedia.org/wiki/Fatigue_(material)

    Fatigue has traditionally been associated with the failure of metal components which led to the term metal fatigue. In the nineteenth century, the sudden failing of metal railway axles was thought to be caused by the metal crystallising because of the brittle appearance of the fracture surface, but this has since been disproved. [ 1 ]

  3. Rainflow-counting algorithm - Wikipedia

    en.wikipedia.org/wiki/Rainflow-counting_algorithm

    Rainflow counting identifies the closed cycles in a stress-strain curve. The rainflow-counting algorithm is used in calculating the fatigue life of a component in order to convert a loading sequence of varying stress into a set of constant amplitude stress reversals with equivalent fatigue damage.

  4. Fatigue limit - Wikipedia

    en.wikipedia.org/wiki/Fatigue_limit

    The fatigue limit or endurance limit is the stress level below which an infinite number of loading cycles can be applied to a material without causing fatigue failure. [1] Some metals such as ferrous alloys and titanium alloys have a distinct limit, [ 2 ] whereas others such as aluminium and copper do not and will eventually fail even from ...

  5. Goodman relation - Wikipedia

    en.wikipedia.org/wiki/Goodman_relation

    Within the branch of materials science known as material failure theory, the Goodman relation (also called a Goodman diagram, a Goodman-Haigh diagram, a Haigh diagram or a Haigh-Soderberg diagram) is an equation used to quantify the interaction of mean and alternating stresses on the fatigue life of a material. [1]

  6. Paris' law - Wikipedia

    en.wikipedia.org/wiki/Paris'_law

    Paris' law (also known as the Paris–Erdogan equation) is a crack growth equation that gives the rate of growth of a fatigue crack. The stress intensity factor K {\displaystyle K} characterises the load around a crack tip and the rate of crack growth is experimentally shown to be a function of the range of stress intensity Δ K {\displaystyle ...

  7. Vibration fatigue - Wikipedia

    en.wikipedia.org/wiki/Vibration_fatigue

    Vibration fatigue is a mechanical engineering term describing material fatigue, caused by forced vibration of random nature. An excited structure responds according to its natural-dynamics modes, which results in a dynamic stress load in the material points. [ 1 ]

  8. Creep (deformation) - Wikipedia

    en.wikipedia.org/wiki/Creep_(deformation)

    Creep also explains one of several contributions to densification during metal powder sintering by hot pressing. A main aspect of densification is the shape change of the powder particles. Since this change involves permanent deformation of crystalline solids, it can be considered a plastic deformation process and thus sintering can be ...

  9. Flow stress - Wikipedia

    en.wikipedia.org/wiki/Flow_stress

    The flow stress is an important parameter in the fatigue failure of ductile materials. Fatigue failure is caused by crack propagation in materials under a varying load, typically a cyclically varying load. The rate of crack propagation is inversely proportional to the flow stress of the material.

  1. Ad

    related to: metal fatigue calculation