Search results
Results from the WOW.Com Content Network
This means that 15 moles of molecular oxygen (O 2) is required to react with 2 moles of benzene (C 6 H 6) The amount of oxygen required for other quantities of benzene can be calculated using cross-multiplication (the rule of three). For example, if 1.5 mol C 6 H 6 is present, 11.25 mol O 2 is required:
The number of moles of ethanol is 0.2 kg / (0.04607 kg/mol) = 4.341 mol, so that the apparent molar volume is 0.2317 L / 4.341 mol = 0.0532 L / mol = 53.2 cc/mole (1.16 cc/g). However pure ethanol has a molar volume at this temperature of 58.4 cc/mole (1.27 cc/g). If the solution were ideal, its volume would be the sum of the unmixed components ...
The contribution of the muscle to the specific heat of the body is approximately 47%, and the contribution of the fat and skin is approximately 24%. The specific heat of tissues range from ~0.7 kJ · kg−1 · °C−1 for tooth (enamel) to 4.2 kJ · kg−1 · °C−1 for eye (sclera). [13]
The molar mass of atoms of an element is given by the relative atomic mass of the element multiplied by the molar mass constant, M u ≈ 1.000 000 × 10 −3 kg/mol ≈ 1 g/mol. For normal samples from Earth with typical isotope composition, the atomic weight can be approximated by the standard atomic weight [ 2 ] or the conventional atomic weight.
Historically, the mole was defined as the amount of substance in 12 grams of the carbon-12 isotope.As a consequence, the mass of one mole of a chemical compound, in grams, is numerically equal (for all practical purposes) to the mass of one molecule or formula unit of the compound, in daltons, and the molar mass of an isotope in grams per mole is approximately equal to the mass number ...
The yield coefficient is defined as the amount of cell mass (kg) or product formed (kg,mol) [Notes 1] related to the consumed substrate (carbon or nitrogen source or oxygen in kg or moles) or to the intracellular ATP production (moles)." [4] [5]: 168
In environmental chemistry, the chemical oxygen demand (COD) is an indicative measure of the amount of oxygen that can be consumed by reactions in a measured solution.It is commonly expressed in mass of oxygen consumed over volume of solution, which in SI units is milligrams per liter (mg/L).
where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...