enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eigenfunction - Wikipedia

    en.wikipedia.org/wiki/Eigenfunction

    Taking the inner product of each side of this equation with an arbitrary basis function u i (t), = () = = (), = =. This is the matrix multiplication Ab = c written in summation notation and is a matrix equivalent of the operator D acting upon the function f ( t ) expressed in the orthonormal basis.

  3. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    which can be found by stacking into matrix form a set of equations consisting of the above difference equation and the k – 1 equations =, …, + = +, giving a k-dimensional system of the first order in the stacked variable vector [+] in terms of its once-lagged value, and taking the characteristic equation of this system's matrix.

  4. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.

  5. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  6. Generalized eigenvector - Wikipedia

    en.wikipedia.org/wiki/Generalized_eigenvector

    This basis can be used to determine an "almost diagonal matrix" in Jordan normal form, similar to , which is useful in computing certain matrix functions of . [9] The matrix J {\displaystyle J} is also useful in solving the system of linear differential equations x ′ = A x , {\displaystyle \mathbf {x} '=A\mathbf {x} ,} where A {\displaystyle ...

  7. Jordan normal form - Wikipedia

    en.wikipedia.org/wiki/Jordan_normal_form

    The Jordan normal form is the most convenient for computation of the matrix functions (though it may be not the best choice for computer computations). Let f(z) be an analytical function of a complex argument. Applying the function on a n×n Jordan block J with eigenvalue λ results in an upper triangular matrix:

  8. Rayleigh theorem for eigenvalues - Wikipedia

    en.wikipedia.org/wiki/Rayleigh_theorem_for_eigen...

    The number of these known functions is the size of the basis set. The expansion coefficients are also numbers. The number of known functions included in the expansion, the same as that of coefficients, is the dimension of the Hamiltonian matrix that will be generated. The statement of the theorem follows. [1] [2]

  9. Self-adjoint operator - Wikipedia

    en.wikipedia.org/wiki/Self-adjoint_operator

    If we use the third choice of domain (with periodic boundary conditions), we can find an orthonormal basis of eigenvectors for A, the functions ():=. Thus, in this case finding a domain such that A is self-adjoint is a compromise: the domain has to be small enough so that A is symmetric, but large enough so that D ( A ∗ ) = D ( A ...