Search results
Results from the WOW.Com Content Network
A phonon is a collective excitation in a periodic, elastic arrangement of atoms or molecules in condensed matter, specifically in solids and some liquids.A type of quasiparticle in physics, [1] a phonon is an excited state in the quantum mechanical quantization of the modes of vibrations for elastic structures of interacting particles.
The relationship between frequency (proportional to energy) and wavenumber or velocity (proportional to momentum) is called a dispersion relation. Light waves in a vacuum have linear dispersion relation between frequency: ω = c k {\displaystyle \omega =ck} .
The "time" axis gives the angular frequency (rad⋅s −1) and the "space" axis represents the angular wavenumber (rad⋅m −1). Green and indigo represent left and right polarization. In empty space, the photon moves at c (the speed of light) and its energy and momentum are related by E = pc, where p is the magnitude of the momentum vector p.
Frequency is inversely proportional to wavelength, according to the equation: [26] = where v is the speed of the wave (c in a vacuum or less in other media), f is the frequency and λ is the wavelength. As waves cross boundaries between different media, their speeds change but their frequencies remain constant.
In 1900, Max Planck postulated the proportionality between the frequency of a photon and its energy , =, [11] [12] and in 1916 the corresponding relation between a photon's momentum and wavelength, =, [13] where is the Planck constant.
The period (symbol T) is the interval of time between events, so the period is the reciprocal of the frequency: T = 1/f. [2] Frequency is an important parameter used in science and engineering to specify the rate of oscillatory and vibratory phenomena, such as mechanical vibrations, audio signals , radio waves, and light.
The photon's momentum is then simply this effective mass times the photon's frame-invariant velocity c. For a photon, its momentum = /, and thus hf can be substituted for pc for all photon momentum terms which arise in course of the derivation below. The derivation which appears in Compton's paper is more terse, but follows the same logic in ...
The result is that only photons of a specific frequency will be absorbed by the atom. This creates a line in the spectrum, known as an absorption line, which corresponds to the energy difference between states 1 and 2. The atomic orbital model thus predicts line spectra, which are observed experimentally.