enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Air changes per hour - Wikipedia

    en.wikipedia.org/wiki/Air_changes_per_hour

    Q = Volumetric flow rate of air in cubic feet per minute (cfm) Vol = Space volume L × W × H, in cubic feet; In metric units = where: ACPH = number of air changes per hour; higher values correspond to more ventilation; Q = Volumetric flow rate of air in liters per second (L/s)

  3. Actual cubic feet per minute - Wikipedia

    en.wikipedia.org/wiki/Actual_cubic_feet_per_minute

    Actual cubic feet per minute (ACFM) is a unit of volumetric flow. It is commonly used by manufacturers of blowers and compressors. [1] This is the actual gas delivery with reference to inlet conditions, whereas cubic foot per minute (CFM) is an unqualified term and should only be used in general and never accepted as a specific definition without explanation.

  4. Friction loss - Wikipedia

    en.wikipedia.org/wiki/Friction_loss

    The friction loss is customarily given as pressure loss for a given duct length, Δp / L, in units of (US) inches of water for 100 feet or (SI) kg / m 2 / s 2. For specific choices of duct material, and assuming air at standard temperature and pressure (STP), standard charts can be used to calculate the expected friction loss.

  5. Moody chart - Wikipedia

    en.wikipedia.org/wiki/Moody_chart

    In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor f D, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe.

  6. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    Most charts or tables indicate the type of friction factor, or at least provide the formula for the friction factor with laminar flow. If the formula for laminar flow is f = ⁠ 16 / Re ⁠ , it is the Fanning factor f , and if the formula for laminar flow is f D = ⁠ 64 / Re ⁠ , it is the Darcy–Weisbach factor f D .

  7. Darcy friction factor formulae - Wikipedia

    en.wikipedia.org/wiki/Darcy_friction_factor_formulae

    In this article, the following conventions and definitions are to be understood: The Reynolds number Re is taken to be Re = V D / ν, where V is the mean velocity of fluid flow, D is the pipe diameter, and where ν is the kinematic viscosity μ / ρ, with μ the fluid's Dynamic viscosity, and ρ the fluid's density.

  8. Bypass ratio - Wikipedia

    en.wikipedia.org/wiki/Bypass_ratio

    The bypass ratio (BPR) of a turbofan engine is the ratio between the mass flow rate of the bypass stream to the mass flow rate entering the core. [1] A 10:1 bypass ratio, for example, means that 10 kg of air passes through the bypass duct for every 1 kg of air passing through the core.

  9. Airflow - Wikipedia

    en.wikipedia.org/wiki/Airflow

    Mechanical ventilation uses fans to induce flow of air into and through a building. Duct configuration and assembly affect air flow rates through the system. Dampers, valves, joints and other geometrical or material changes within a duct can lead to flow pressure (energy) losses. [2]