enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    The simplest case of a normal distribution is known as the standard normal distribution or unit normal distribution. This is a special case when μ = 0 {\textstyle \mu =0} and σ 2 = 1 {\textstyle \sigma ^{2}=1} , and it is described by this probability density function (or density): φ ( z ) = e − z 2 2 2 π . {\displaystyle \varphi (z ...

  3. Gaussian integral - Wikipedia

    en.wikipedia.org/wiki/Gaussian_integral

    A different technique, which goes back to Laplace (1812), [3] is the following. Let = =. Since the limits on s as y → ±∞ depend on the sign of x, it simplifies the calculation to use the fact that e −x 2 is an even function, and, therefore, the integral over all real numbers is just twice the integral from zero to infinity.

  4. Sum of normally distributed random variables - Wikipedia

    en.wikipedia.org/wiki/Sum_of_normally...

    It is possible to have variables X and Y which are individually normally distributed, but have a more complicated joint distribution. In that instance, X + Y may of course have a complicated, non-normal distribution. In some cases, this situation can be treated using copulas.

  5. Log-normal distribution - Wikipedia

    en.wikipedia.org/wiki/Log-normal_distribution

    In probability theory, a log-normal (or lognormal) distribution is a continuous probability distribution of a random variable whose logarithm is normally distributed.Thus, if the random variable X is log-normally distributed, then Y = ln(X) has a normal distribution.

  6. Error function - Wikipedia

    en.wikipedia.org/wiki/Error_function

    Given a random variable X ~ Norm[μ,σ] (a normal distribution with mean ... In particular, there is a systematic methodology to solve the numerical coefficients ...

  7. Distribution of the product of two random variables - Wikipedia

    en.wikipedia.org/wiki/Distribution_of_the...

    The distribution of the product of correlated non-central normal samples was derived by Cui et al. [11] and takes the form of an infinite series of modified Bessel functions of the first kind. Moments of product of correlated central normal samples. For a central normal distribution N(0,1) the moments are

  8. Multivariate normal distribution - Wikipedia

    en.wikipedia.org/wiki/Multivariate_normal...

    The equidensity contours of a non-singular multivariate normal distribution are ellipsoids (i.e. affine transformations of hyperspheres) centered at the mean. [29] Hence the multivariate normal distribution is an example of the class of elliptical distributions.

  9. Monte Carlo method - Wikipedia

    en.wikipedia.org/wiki/Monte_Carlo_method

    The approximation of a normal distribution with a Monte Carlo method. Monte Carlo methods, or Monte Carlo experiments, are a broad class of computational algorithms that rely on repeated random sampling to obtain numerical results. The underlying concept is to use randomness to solve problems that might be deterministic in principle.