Search results
Results from the WOW.Com Content Network
The second derivative of a function f can be used to determine the concavity of the graph of f. [2] A function whose second derivative is positive is said to be concave up (also referred to as convex), meaning that the tangent line near the point where it touches the function will lie below the graph of the function.
sinh x is half the difference of e x and e −x cosh x is the average of e x and e −x In terms of the exponential function : [ 1 ] [ 4 ] Hyperbolic sine: the odd part of the exponential function, that is, sinh x = e x − e − x 2 = e 2 x − 1 2 e x = 1 − e − 2 x 2 e − x . {\displaystyle \sinh x={\frac {e^{x}-e^{-x}}{2}}={\frac {e ...
The derivative of ′ is the second derivative, denoted as ″ , and the derivative of ″ is the third derivative, denoted as ‴ . By continuing this process, if it exists, the n {\displaystyle n} th derivative is the derivative of the ( n − 1 ) {\displaystyle (n-1)} th derivative or the derivative of order ...
Second derivative; Implicit differentiation; ... At this point, it would be possible to change back to real numbers using the formula e 2ix + e −2ix = 2 cos 2x ...
Second derivative; Implicit differentiation ... (i.e. > ) one has (, >) = ... This formula is the general form of the Leibniz integral rule and can be derived ...
If f is a function, then its derivative evaluated at x is written ′ (). It first appeared in print in 1749. [3] Higher derivatives are indicated using additional prime marks, as in ″ for the second derivative and ‴ for the third derivative. The use of repeated prime marks eventually becomes unwieldy.
Considering a second derivative of in the integral on the LHS of the formula for partial integration suggests a repeated application to the integral on the RHS: ″ = ′ ′ ′ = ′ (′ ″).
The second derivative test can still be used to analyse critical points by considering the eigenvalues of the Hessian matrix of second partial derivatives of the function at the critical point. If all of the eigenvalues are positive, then the point is a local minimum; if all are negative, it is a local maximum.