Search results
Results from the WOW.Com Content Network
The engine uses a gas-generator cycle developed in the United States in the late 1950s and was used in the Saturn V rocket in the 1960s and early 1970s. Five F-1 engines were used in the S-IC first stage of each Saturn V, which served as the main launch vehicle of the Apollo program.
The Saturn V reached 400 feet per second (120 m/s) at over 1 mile (1,600 m) in altitude. Much of the early portion of the flight was spent gaining altitude, with the required velocity coming later. The Saturn V broke the sound barrier at just over 1 minute at an altitude of between 3.45 and 4.6 miles (5.55 and 7.40 km). At this point, shock ...
Engine Origin Designer Vehicle Status Use Propellant Power cycle Specific impulse (s) [a] Thrust (N) [a] Chamber pressure (bar) Mass (kg) Thrust: weight ratio [b] Oxidiser: fuel ratio
S-IC-T was planned as a test rocket only and not to be used in the later Apollo program. The Saturn V rocket was used in the Apollo program to depart Earth's gravity. S-IC-T, like all following Saturn V's S-IC rockets used five Rocketdyne F-1 engines. The Rocketdyne F-1 engine was first tested in March 1959 and delivered to NASA in October 1963.
F-1 rocket engine used in the Saturn program, Rocketdyne former main production facility, Canoga Park, Los Angeles. After World War II, North American Aviation (NAA) was contracted by the Defense Department to study the German V-2 missile and adapt its engine to Society of Automotive Engineers (SAE) measurements and U.S. construction details.
SA-500F was the first complete assembly of something resembling a Saturn V, and model makers quickly patterned their designs after its paint scheme, but engineers changed the black stripe to white in the intertank section of the first stage for flight vehicles after discovering the intertank got too hot from the heat of the Sun. The third stage ...
The S-IC (pronounced S-one-C [3] [4]) was the first stage of the American Saturn V rocket. The S-IC stage was manufactured by the Boeing Company. Like the first stages of most rockets, more than 90% of the mass at launch was propellant, in this case RP-1 rocket fuel and liquid oxygen (LOX) oxidizer.
In the 1960s, the 260 was initially designed to test the feasibility of solid rocket motors for space exploration, including use on the lower stage of the Saturn V. Development of the motors was originally given as parallel contracts to Aerojet and Thiokol. Aerojet won out in the end when Thiokol's test chamber burst at 56% of proving pressure ...